
Informatics in Education, 2020, Vol. 19, No. 2, 181–200
© 2020 Vilnius University
DOI: 10.15388/infedu.2020.09

181

Effect of Using Metacognitive Strategies
to Enhance Programming Performances

Ünal ÇAKIROĞLU, Betul ER
Trabzon University, Computer and Instructional Technologies Department
Sogutlu, 61300, Trabzon, Turkey
e-mail: cakiroglu@trabzon.edu.tr, betulyildirim05@gmail.com

Received: June 2019

Abstract. Considerable effort has been invested in innovative practices about teaching program-
ming. Although the usefulness of metacognition in learning process is acknowledged, evidence
demonstrating how metacognitive strategies effect in the programming classrooms is still very
scarce. Given the importance of metacognitive strategies, this study seeks to examine the effect
of the strategies to students’ performances in programming courses. The qualitative techniques
were used to determine the participants’ programming performances and explicate their experi-
ences about the role of the strategies. The results indicated that while almost half of the students’
programming performances were multistructural the other half was prestructural and unistructural
categories of Solo taxonomy. The quality of the programming problems is found to have an im-
portant role in the development of both cognitive knowledge and cognitive regulation strategies.
Furthermore, the cognitive potentials and problem solving habits of the students were also found
to be effective on their metacognitive development. The implications of notable findings and di-
rections for future studies were also discussed.

Keywords: metacognitive strategies, programming performances, problem solving.

Introduction

Scholars have been using innovative instructional techniques in the field of teaching
programming. In the last decades, programming has been taught as a mandatory course
in many computer science departments. Researchers claim that learning programming
for the first time is challenging (Ford, 2007, Helminen and Malmi, 2010; Chen, Li and
Wang, 2012). While programming, students should have basic programming language
knowledge and problem-solving skills (Gundurao, Manjunath and Nachappa, 2010).
During the programming process, it is difficult for students to manage their conceptual,
operational and procedural knowledge in programming environment. In this context,
in order to facilitate learning process, teaching methods have gained much attention in
recent years. For the last three decades, new perspectives in teaching and assessing pro-
gramming have gained popularity among educators.

Ü. Çakiroğlu, B. Er182

During the programming processes, students should think about the solutions ana-
lytically, perform proper programming approaches and correct the programming errors.
While seeking alternative solutions, they should decide about the actions in order. In
order to acquire acquisitions, students should examine the program outputs thoroughly
and transfer their gains to other problems (Guss and Wiley, 2007; Linn and Dalbey,
2013; Mohd Rum, Ismail, 2014). Since learning or doing programming is a challeng-
ing process, students should take responsibility of their own learning and enable their
metacognition and self-regulation. Many researchers argue that enabling metacogni-
tion in the problem-solving positively influences the process. For instance; the study
conducted by Teong (2003) noted the significant effects of meta-cognitive training on
problem solving. Thus, it could be claimed that improving metacognition in program-
ming can facilitate the problem-solving process via programming. In this study, we
thought that triggering students’ metacognitive skills can positively affect program-
ming performances. In order to achieve this, we enriched the programming tasks with
metacognitive strategies to make the problem-solving processes easier. In line with this
idea, we designed an intervention to improve students’ metacognitive awareness and
make them use metacognitive strategies in the programming class.

Metacognition in Programming

Metacognition is defined as an individual’s awareness of own cognitive processes and
capability of controlling these processes (Flavell, 1979; Livingston, 2003; Scott and
Levy, 2013). A student who has metacognitive skills knows how his/her cognitive sys-
tem works and monitors his/her own performance (i.e. self-monitoring). Researchers
argue that one of the most important factors leading learning is activating metacognition
(Schraw, 1998; Veenman, Prins, and Elshout, 2002). Metacognition is discussed into
two dimensions as cognition and regulation of cognition (Schraw and Moshman, 1995).
According to this model, cognition knowledge is defined as the knowledge about one’s
own cognition. According to Schraw and Moshman (1995), the declarative knowledge
strategy is the knowledge of the individual in general about himself, his strategies and
the factors that affect his performance. Procedural knowledge strategy is the knowledge
of the individual’s ability to perform and follow the steps of a procedure. Conditional
knowledge strategy is an individual’s knowledge of when and how cognitive activities
are implemented.

The regulation of cognition consists of strategies that guide the individual’s own
learning. Planning, monitoring and evaluation are three basic metacognitive strategies
about cognition regulation. Planning refers to the selection of targeted strategies and
effective selection of the resources necessary to achieve the target (Miller, 1985). Moni-
toring is the strategy that covers the progress of the individual by evaluating whether s/
he comprehends his/her goal during the learning process (Schraw, 1998). Evaluation is
the decision about the learning outcomes and the effectiveness of the strategies in the
learning process (Schraw and Moshman, 1995).

Effect of using Metacognitive Strategies to Enhance Programming Performances 183

In order to develop metacognitive skills, teachers are suggested to provide meta-
cognitive support to students. Researchers suggest that students should be provided
with appropriate learning environments for developing and implementing metacogni-
tive skills (Derry, 1992; Salomon and Perkins, 1989). In this context, combining meta-
cognitive strategies and instruction is crucial for effective learning outcomes (Hartley,
2001; Park, 1992). Hence; enhancing metacognitive awareness is critical and it has
received a growing attention. The fact that metacognitive skills can be improved by
some approaches leads researchers to study on the relationship between metacognitive
strategies and problem-solving skills.

Problem-solving in computer programming requires cognitive skills that the stu-
dents should work in a methodical manner and provide special representations. Pro-
gramming process demands metacognitive skills because programmers should organize
their knowledge and use the features of programming environment at the same time.
Programmer should decide on the approach they would use, the strategies they would
apply and they should organize the structural programming knowledge. They should
learn from the feedback, error messages or other tools during programming that is suit-
able for developing metacognition skills and awareness.

According to Storey (2004), during programming, the programmer creates a mental
model, expresses the data and the working system of the program, and thinks algorith-
mic (Apiola and Tedre, 2012; Zapu ek and Rugelj, 2013). Making assumptions and
formulizing the modifications (Helminen and Malmi, 2010) and managing the ideas
during problem-solving are also parts of programming (McCormick, 2003; Lee, Teo
and Bergin, 2009. They). Students often need support to eliminate difficulties in prob-
lem solving processes. In this sense, metacognitive controls can facilitate programming
process in planning (solution plan), monitoring (monitoring the design and development
of the program) and evaluation (testing the problem solution and reflecting it) (Lee, Teo
and Bergin, 2009). Within this idea, many alternative programming environments have
been designed with the goal of supporting novices while learning to program. A few
research in programming found that students who possess metacognitive management
skills and strategies perform well in programming compared to those in whom the skills
are lacking (Bergin, Reilly, and Traynor, 2005).

While a large number of studies have been conducted to investigate the role of
meta-cognition in the learning process, there have been few investigations in the con-
text of learning programming. Following conclusions from the previous studies (Lin,
Schwartz and Hatano, 2005), we aim to gain a practical insight into the relationships
between training metacognitive strategies and programming performances. Thus; the
purpose of this study is to investigate the effect of efforts in developing metacogni-
tive strategies on the programming performances. More specifically, our research ad-
dressed the following question:

How do metacognitive strategies affect the programming performances during
higher education programming course?

Ü. Çakiroğlu, B. Er184

Research Methodology

In this case study, qualitative data collection and analysis procedure is carried out. Mul-
tiple data sources are used to determine the role of metacognition in programming per-
formances (Yin, 2003). A small sample group is chosen to meet the certain purpose of
the qualitative design. The sample group of this study consists of 16 candidates of IT
teachers (7 females, 9 males, average age = 20) enrolled in an IT department of a Turkish
university. All of the participants received introductory programming course in the pre-
vious year. Participants are being referred to in an alphanumeric manner as S1, S2,

Instructional Process

Problem-solving is a common activity used as a teaching and learning approach in com-
puter programming education because it helps students to develop different cognitive
abilities. Solving problems requires a great deal of cognitive effort in activities such
as finding solutions, identifying problems, and testing hypotheses. The study was con-The study was con-
ducted with 10 projects presented to the students in Advanced Programming Course
which covers basic programming concepts and structures. The projects are presented in
Table 1. Learning objectives include the concepts of basic variables and transactions,
loop and comparison, inner loop and operators, conditionals (if-else), functions, arrays
and logical reasoning problems. The study lasted for10 weeks.

The study procedure is summarized in Fig. 1.

Data Collection Tools

Data collections tools were used to assess the development of metacognitive skills and
also the programming performances.

The data collection tools utilized are shown in Table 2.

Table1
Weekly programming projects

Project # Projects

P1 Arithmetic Operations
P2 Exponential numbers
P3 Random Number Generation
P4 Armstrong Numbers
P5 Pascal Triangle
P6 Arrays
P7 Number Analysis
P8 Hangman Game
P9 Problems
P10 Chess Pieces

Effect of using Metacognitive Strategies to Enhance Programming Performances 185

Fig. 1. Research procedure.

Table 2
Data collection tools

Data Collection Tools Purpose of Use Frequency of use

Worksheet Developing metacognitive strategies
Evaluating programming performances

Used weekly throughout the process

Observation Form To observe the development of metacognitive
strategies

Used weekly following the
worksheets

Interview To determine the evaluations and opinions of
the students for the study and procedure.

During the teaching period and once
at the end of the given period

Ü. Çakiroğlu, B. Er186

Worksheets

In this study, meta-cognitive training is carried out via worksheets which can be consid-
ered as an instructional intervention to develop the practice of meta-cognitive strategies.
In the worksheet, metacognitive strategies were presented with metacognitive exercises.
The worksheet provides both the enrichment of metacognition and programming teach-
ing and the evaluation of programming skills through solutions. Students’ programming
performances were evaluated by analysing the responses which they provided for the
problems in these worksheets. It was prepared by the researchers through considering
the reviews of two experts. A four-week of pilot study with another sample was con-
ducted to rearrange the questions in the worksheets.

In this study, writing a program is considered as a challenging process. Therefore, the
metacognitive strategies were delivered at the starting point to write a program, during
writing a program and after finishing the writing process. With this in mind, metacogni-
tive support was made regarding these three stages in the worksheet: at the beginning,
during and at the end of the program.

The development of students’ programming skills was analysed and evaluated within
the framework of Solo taxonomy over their answers to the problems in these worksheets.
Research shows that SOLO is an effective framework for examining the indicators of the
students’ programming knowledge and examining their development in programming
(Lister et al., 2006; Sheard et al., 2008). Therefore, in recent years, SOLO taxonomy
has been widely used in computer science education to classify students’ solutions to
programming assignments (Whalley et al., 2011).

Observation Form

Metacognitive skills are difficult to measure because there are internal processes that
individuals are often unaware of (Schraw, 2009). Measurement tools used to measure
metacognition are examined in two categories: reports based on one’s own statements
(questionnaires and interviews) and objective behaviour measurements (systematic ob-
servation and voice thinking protocols) (Veenman, 2005). According to Schraw (2009),
it is very difficult to find a method that allows the simultaneous connection to the meta-
cognition process and can measure all of these processes alone. Therefore, the use of
such multidimensional scales to measure metacognitive skills is considered appropriate
by some researchers (Garner and Alexander, 1989; Schraw, 2009).The observation form
in this study was based on the metacognition model suggested by Schraw and Moshman
(1995). In this model, metacognition is considered under two main categories; knowl-
edge of cognition and regulation of the cognition. Knowledge of cognition is examined
under three sub-categories; declarative knowledge, procedural knowledge and condi-
tional knowledge. The regulation of cognition is evaluated under three sub-categories;
planning, monitoring and evaluation. Planning strategy refers to the selection of targeted
strategies and effective selection of the resources necessary to achieve the target (Miller,
1985). Monitoring strategy is the strategy that covers progress by evaluating whether the

Effect of using Metacognitive Strategies to Enhance Programming Performances 187

target is understood during the learning process, how the performance is, and the effec-
tiveness of the strategies used (Schraw, 1998). The evaluation strategy is that the learner
makes decisions about the learning outcomes and the effectiveness of the strategies used
throughout the learning process (Schraw and Moshman, 1995).

The observation form was used to determine the development of metacognitive skills
used during the instructional process. It was developed by the researcher according to
the reviews of the field experts. While preparing the observation form, a two-phased test
development technique was used. Two-phased tests are developed to eliminate the dis-
advantages of the multiple-choice tests (Tan, Goh, Chia and Treagust, 2002; Mann and
Treagust, 1998). At the first phase, students were asked to determine the case, and at the
second phase they were asked to explain why they determined the given case.

The form is 3-point Likert type (Yes, No, Partially) and also includes an open ended
item with each item. Before starting to write programs, students’ were asked to write
their goals, strategies and the resources they used in the worksheet. Thus, students’ an-
swers in the worksheet were easily analysed.

Interviews

Interviews were conducted in order to explain the students’ responses in the observation
form. In line with the reviews of the experts, six open-ended questions were provided
in the interviews. The experts were instructors having at least 10 years of programming
teaching experience. The interviews enable the researcher to examine students’ thoughts
in depth. Taking students’ answers in the worksheets, students were asked to explain
whether metacognition strategies were useful for their development of metacognitive
strategies. The interviews were conducted with randomly selected six students once in
three-weeks during the research process and with six students at the end of the process.

Data Analysis Methods

Analysis of the Worksheets

In this study; the SOLO Assessment Taxonomy as developed by Lister et al. (2006)
was adopted and used to evaluate programming performances. Worksheets were applied
weekly for the period of ten-weeks with the aim of developing metacognitive strategies
of the students. The answers to the worksheet questions below about the tasks were
evaluated within the framework of SOLO categories.

Review what was asked from you in the question. What is the necessary informa-1.
tion you need to have to write code?
Which procedures do you perform gradually while writing code?2.
How did this code contribute to your programming knowledge? Where could you 3.
use what you learned?

Ü. Çakiroğlu, B. Er188

The assessment criteria for the analysis of the worksheets and SOLO categories are
summed up in Table 3.

The answers of the three questions were combined and evaluated as one since they
correspond to one category in SOLO taxonomy. The responses of the students were
evaluated according to which criteria they meet in the SOLO. For instance, if the answer
of the students was irrelevant or lacks the basic structures of programming, the program-
ming performance of the student was evaluated as prestructural for the given task.

Analysis of the Observation Form

Observation forms were analysed with a rubric prepared according to the model of
Schraw and Moshman (1995). In the form, 14 items were included with a 3-point Likert
type scale including Yes, No, Partly and there was an explanation section to be complet-
ed for each item. While assessing the forms, scale and explanation part were evaluated
together and item score was determined. The item score scale is presented in Table 4.

The form contains a 3-point Likert scale, Yes, No and Partially, and a description sec-
tion for each item. The responses on the form were evaluated by regarding the explanations
and the responses that the students provided for each item. The responses and explanations
were used to discuss the development of using metacognition strategies for students.

When evaluating the forms, the responses to the items and explanation part were
evaluated together. When evaluating the item about the status of declarative informa-
tion from metacognition strategies, the situation of predicting whether the student can
perform the given task was taken into consideration. When evaluating the item about

Table3
SOLO assessment taxonomy

SOLO Category Assessment Criteria

Prestructural The answer is either irrelevant or slightly relevant with the question. ●
Lack of information in terms of programming structures ●

Unistructural Answer explains only a part of the code ●
The student reflects the correct comprehension but not all aspects of the question. ●
Code repetition is made from the other programming duties or education materials. ●

Multistructural Answer explains most of the code with minor mistakes. ●
Answer explains most of the code without focusing on the relationship between codes ●
and expressions.

Relational Answer shows that the purpose and function of the code is understood. ●
Answers show the programming concepts and the integration of the structures. ●
Understanding how to apply key programming concept/idea to the similar/known ●
problem.

Extended Abstract Achieving key program principals or assigned problem and questioning. ●
Answer explains a program concept or principals in a way which shows problem solv- ●
ing skills of the students on the new or unseen problems.
Obtained information could be integrated into more sophisticated programs/other ●
fields.

Effect of using Metacognitive Strategies to Enhance Programming Performances 189

procedural information, the ability of the student to determine the steps to be used in the
program writing process was taken into consideration.

While evaluating the planning strategy, the situation of determining the student’s
purpose and resources and associating them in a significant way was examined. While
evaluating the monitoring strategy in the form, the student scored according to the status
of realizing the objectives during the program writing process and determining the nec-
essary steps in order to reach the results in accordance with the project.

In the form, the items were evaluated as advanced if the students’ statements clearly
indicated that they were able to determine the success of the course, the points they had
difficulty, their strengths and weaknesses and the ability to integrate the information they
learned in other fields. If the statements partially reflected these situations, the items
were considered acceptable. Regarding the criteria in Table 4, the responses in the form
were evaluated. For instance, while evaluating the item 2 which allows determining the

Table 4
Item score scale

Explanation Level Evaluation Score

Needs Improvement Yes
Partly
No

1
0
0

Acceptable Yes
Partly
No

3
2
1

Advanced Yes
Partly
No

4
3
2

Fig. 2. A sample item from the observation form.

Ü. Çakiroğlu, B. Er190

declarative knowledge among the metacognition strategies, it is regarded whether the
students performed the given task or not. The evaluation items of metacognitive strategy
development is presented in Table 5.

If the student could predict whether s/he could perform the task and could explain
the reason for it, the status of the student about the given knowledge was evaluated as
“Advanced”. On the other hand, if the student could predict whether s/he could perform
the task and could not explain the reason for it, the item was evaluated as “Acceptable”.
On the contrary, if a student indicated not to predict whether s/he could do the task, the
item was evaluated as “Needs Improvement”. For instance, since the student could not
express his/her purpose clearly with the sentence “My purpose: Running the program”,
it was evaluated as “Acceptable”. If the student could not determine these cases, his/her
answer was evaluated as “Needs Improvement”.

Results

Changes in Metacognitive Skills

Observation form for the development of metacognition strategies was analysed through
a rubric. Students’ development in two main dimensions which are knowledge of cogni-
tion and regulation of cognition are presented in Fig. 3.

 Fig. 3 indicates that the scores for knowledge of cognition is at average level (be-
tween 5 and 10) during the ten-week. In terms of regulation of the knowledge, there
were slight decreases in the second and eighth weeks. S5 explained the reason for this
decrease in semi-structured interviews as “Since the solutions for the last projects were
challenging, it was helpful in terms of finding new solutions to different questions…”.

Table 5
Evaluating metacognitive strategy development

Acceptable Needs Improvement Advanced

Declarative Knowledge Ability to predict achievement of the task and to explain the reason for it.

Procedural Knowledge Ability to determine the steps to take while writing a program, to express these steps
respectively.

Conditional Knowledge Being aware of the necessity of getting help about the given strategies, and to be
able to express what this help exactly is.

Planning Be able to determine the aims and sources while doing the tasks, and associating
them clearly.

Monitoring Be able to reveal the progress of doing tasks throughout the process of writing a
program, and to determine the necessary steps properly to reach a conclusion.

Evaluation Be able to determine course success, the challenging points, strength and
weaknesses, and whether s/he can integrate the newly learned information into
other fields throughout the program.

Effect of using Metacognitive Strategies to Enhance Programming Performances 191

The weekly average scores of the 16 students’ metacognitive development in these
sub-categories are shown in Fig. 4.

Fig. 4 indicates that the average score of declarative knowledge is in the ranks of
2.7 and 3.7 (Acceptable- Advanced). Some of the students who progressed in using the
strategy of declarative knowledge indicated that: S14: “I was aware of what the program
asked from me and to what extent I could achieve them”, S15: “I understood the logic of it
and I know I could handle it”. Although there were slight fluctuations in different weeks,
mean scores related to declarative knowledge were observed to decrease dramatically in
the second and eighth weeks. Some students explained the reason as follows: S16 “The
question seemed challenging”, S12: “At first, I had no idea about what to do”.

Fig. 3. The development knowledge of the cognition, regulation of the knowledge.

Fig. 4. Changes in the scores of metacognition sub-skills.

 Fig. 4. Changes in the scores of metacognition sub-skills.

Ü. Çakiroğlu, B. Er192

In addition, the development of procedural knowledge was at average level. The
explanations of the students who got low scores expressed that the programming prob-
lem was challenging and they could not clearly follow the correct solution steps. For
instance, S13 stated that; “My Steps: I am planning to reach samples on internet and
follow them”. This was assigned as “Needs Improvement” category as he mentioned
his plan in the process instead of noting each step down in a row. S9 whose explanation
was assessed as the “Advanced” category expressed that: “I make some steps in my
mind even though they are not very clear: Determining the number of the variables and
the processing to be made, investigating whether it could be made without using loop
or strings, writing a draft code on a paper, writing on computer.” Given that the student
explained each step clearly, directly and correctly, the explanation was evaluated under
the category of “Advanced”.

In the conditional knowledge strategy, students’ answers were about getting sup-
port. For instance, S12 clearly explained as “The help I will get: I will get help about
understanding the structure of Pascal’s triangle, and arranging the rows and columns”
and it was evaluated as “Advanced”. Similarly, S10 clearly as addressed that “The help
I will get: I need to learn how to use Timer” and indicated the help s/he would need in
another week and clearly talked about it. It was also evaluated as “Advanced”.

As the problems became difficult in the last weeks, an acceptable increase was
observed in spite of the decrease in planning scores. Planning scores were decreased
slightly in week 7. In this line; S1 could not express her purpose clearly by “My pur-
pose: Writing the program as quick as possible. The sources: blogs on internet” and
mentioned the sources shallowly. Thus, the explanations of S1 were evaluated as “Ac-
ceptable”.

Monitoring strategy improved for 10-week of research; however, a decrease was
observed between the weeks 5 and 8 (Fig. 4). S8 responded the items 5 and 8 used
to assess the decreasing monitoring strategy; “Using the rows and columns in loop. I
benefited from the sources when I had difficulty. I checked the program following each
item I wrote”. This answer was not adequate and assigned as “Needs Improvement”.

It was figured out that evaluation strategy scores differed for the whole process.
There were drastic decreases in Weeks 2 and 8. Among the students who experienced the
decrease, S4 was evaluated under “Needs Improvement” category with the explanation:

S4: “I am good at writing a program yet I have some problems with
the errors. Unfortunately, the problem was not easy. I could not man-
age to fix the errors of the program. Whenever I met an error, I thought
I could not continue anymore. ”

S4 explained the reason for this decrease with the fact that he could not fix the
errors. S14 who was evaluated as “Advanced” in evaluation strategy explained the
background of his success as “My only strength is being a ‘researcher’ and thanks to
it I could assimilate my weaknesses”. Similarly, S14 was evaluated in “Advanced”
category at the same week due to the fact that she expressed how she could integrate
other fields as follows: “I could design similar small-scale games just for fun and play
them with my friends”.

Effect of using Metacognitive Strategies to Enhance Programming Performances 193

The Observed Changes in Programming Performances

This study was directed to reveal the programming performances in the given week. The
value of the students’ answers on weekly worksheets in the ten-week course was evalu-
ated according to the SOLO categories.

The development of the students’ programming performances during the 10-week of
research is illustrated in Fig. 5.

In the first week of the research, according to the SOLO category, the answers of
the students to the problems are in 56% prestructural, 31% unistructural and 13% mul-
tistructural categories. In the first week, there were not answers under the categories
of Relational and Extended Abstract. In this week, S4 is under prestructural category
with his answer; “I need to make description, and to use button, textbox and Label. I
remember them in general; however, I think there will be some parts I will need them”.
Even though this student was aware of the structures he would use, he could not express
knowledge of the use of these structures clearly. In the second week, the results showed
that 57% of the answers to the problems in the worksheet are in unistructural category.
While there were not any answers under the Relational category the previous week, 7%
of the answers were under this category in the second week. However, there were not
any answers under Extended Abstract category.

In the second week, the answer by S3 was just explaining how he could write the
program:

“First of all, it is necessary to know how to explain the variable. First, the variables
should be defined and the process should be started with “if else” commands. It is vital
to present the cause and effect relationship.”

Since she did not mention about her plan for the process or where to integrate what
she learned, the answer was evaluated under unistructural category.

In the third week, most of the answers in the worksheet were in unistructural and
multistructural categories with the rate of 37%. There was a slight increase in the num-

0

2

4

6

8

10

12

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week
10

Th
e

nu
m

be
r o

f t
he

 st
ud

en
ts

 Instructional Process

Changes in the Programming Performances

Prestructural

Unistructural

Multistructural

Fig. 5. The development of programming performances during ten weeks.

Ü. Çakiroğlu, B. Er194

ber of the students under the relational category for this problem. There was no answer
for the category of extended abstract in this week. S1 was evaluated under multistruc-
tural category because he properly explained most of the method he would use while
writing a program and how to use it. His answer was:

“I think I should learn how to choose random numbers with Random,
match the numbers with the images, present the matching image as
the selection of the computer. I think within the context of the logic of
Algorithm and put the processing into order in my mind, and finally I
apply it on the program. I have gone over my Random knowledge.”

In the fourth week, most of the answers to the problems in the worksheet were in
prestructural category with the rate of 44%. 12% of the answers were under the unistruc-
tural category while 19% of the answers were under multistructural and relational cat-
egories. Compared to the previous weeks, the number of the students in the prestructural
category decreased and the ones in the relational category increased. In this week, there
were answers in each SOLO category and the rate of the students’ answers in extended
abstract was 6%. In this week, S8 was evaluated under prestructural category with his
irrelevant explanation; “I guess I will use ‘while loop’”.

In the fifth week, most of the answers to the problems in the worksheet were in multi-
structural category with the rate of 47%. 40% of the answers of that week were under the
unistructural category. On the other hand, there was no answer evaluated in the category
of extended abstract in this week.

In this week, S12 provided a clear disclosure about the code to use and the steps she
would take.

“Firstly, what is Pascal’s triangle and for which rule is formed? The
ability to use string, to return string value according to the logic of
Pascal’s triangle, form the structure of Form. Describe a for loop
which controls the values submitted to Textbox. Arrange the col-
umns and rows in the described loop with nested for loop, and oper-
ate. This helped me to improve my programming skills. I have no
idea where to use.”

In the aforesaid rubric, such an explanation is under the category of multistructural.
In the sixth week of the research, most of the answers to the problems in the worksheet

were in unistructural category. 14% of the answers were under the prestructural category
while 21% of the answers were under multistructural and relational categories.

In this week, S9 was assigned in unistructural category because he could express a
part of the codes to use while writing a program though it was not clear.

His explanation was as follows: “I need to study on strings again. Moreover, I do not
know how to split the words by using the spaces, I will search for it. I will use for loop
and strings. I learned split command and the logic of these strings.”

In the seventh week, most of the answers (67%) to the problems in the worksheet
were assessed in multistructural category. As an example; S1 answered the questions of
the week as follows:

Effect of using Metacognitive Strategies to Enhance Programming Performances 195

“I should be able to define text strings. Firstly, I made the strings of the numbers in
digits. Then, I got the number in digit and got it from the string. Consequently, I learned
writing a program like this”. As the student expressed the necessary codes needed to
write the program, and where and how to use them, his/her explanation was evaluated
under multistructural category.

In the eight week, half of the answers (50%) to the problems in the worksheet seemed
to be in multistructural category. 42% of the answers were in unistructural while 8%
percent of them were in relational category. There were not any answers in prestructural
and extended abstract categories of SOLO categories. S4 who was evaluated as multi-
structural category with his following answer:

“Printing image on the screen, adding text characters into the string and controlling
them. I know how to print an image on screen and I could add text characters into the
strings yet I have no idea about controlling them. I clipped the images and created the
design in the program but I do not know what is next. I learned to print the images and
arranging its visibility. I could perform various applications with this.” .The student was
evaluated under this category given that the student thoroughly wrote the steps to follow
program writing process, and the codes.

In the ninth week, most of the answers to the problems in the worksheet seemed to
be in multistructural category (40%) and in unistructural (40%) category. There was no
answer in the category of extended abstract. S15 who was evaluated as multistructural
category answered the question as: “I need to find the squares in chessboard. We add
up the exponents of each square. I have the necessary information. I do not think I will
need it. I will find the number of the squares with for loop. I will make the exponents
of each square add in a different for. It is correct. I may reach it. I contribute nothing
for this problem.”

The student was evaluated under multistructural category since she could not men-
tion how to use this new knowledge in other fields although she properly explained the
codes to use and the steps to take.

In the tenth week, most of the answers to the problems in the worksheet seemed to be
in unistructural (43%) category and multistructural category (43%). The 14% of the stu-
dents’ answers were in prestructural category. Due to the fact that S14 seemed to know
a part of the code by expressing that she would use conditional structure in C, S14 was
evaluated under unistructural category with the following explanation;

“It could be achieved by creating a good logic with If. I know If struc-
ture yet I will need the help of my friend since it is complicated. I am
progressing by creating If structure and I suppose it is correct and I
will be able to manage it. I may use it for fun in the daily life.”

To sum up, it is observed that students’ answers were in multistructural category
(40%–50%) in the whole process. Because the problems became challenging and com-
plicated progressively, the answers of the students were in multistructural category
even though there were some decreases in certain weeks. Moreover, almost 50% of

Ü. Çakiroğlu, B. Er196

the student answers were in prestructural and unistructural categories. In the relational
category, the number of the students ranked between 0 and 9 throughout the process,
and in certain weeks no student was in this category. As for the unistructural category,
the number of the students ranked between 1 and 8, and there were students in this
category each week. In the relational category, there were students only for two weeks,
and students could not manage to reach this last step of the SOLO categories in other
weeks.

Effect of Metacognitive Strategies on Programming Performances

The average development of students’ knowledge of cognition, regulation of cognition
and programming performances during the course of ten-week of research is shown
in Fig. 6.

Fig. 6 shows the average scores in the dimensions of metacognition and program-
ming performances in the ten-week period. Fig. 6 indicates that the students’ perfor-
mances in multistructural category related to knowledge of cognition and regulation of
the knowledge are at reasonable rate. Even though students’ metacognitive development
in the second and third weeks is at acceptable level, their programming performances are
either in prestructural or unistructural category.

Overall, it is seen that the problems are suitable for developing metacognitive strat-
egies in programming. The nature of the related problem has an important role in the
development of both cognitive knowledge and cognitive regulation strategies, and those
students’ cognitive potentials and problem solving experiences have significant effects
on their metacognition development.

0

1

2

3

4

5

0

1

2

3

4

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Pr
og

ra
m

m
in

g
pe

rf
or

m
an

ce
s

M
et

ac
og

ni
tiv

e
sk

ill
s

sc
or

es

Instructional Process

Relationships Between the Changes in Metacognitive Skills and Programing Performances

Knowledge of Cognition Strategy Strategy of Regulation of the Cognition Programming Skills

AD

AC

NI

EA

REL

MS

US

PS

NI (Needs Improvement), AC (Acceptable), AD (Advanced)
PS (Prestructural), US (Unistructural), MS (Multistructural), Rel (Relational), EA (Extended Approach)

Fig. 6. The development of metacognition strategies and programming performances.

Effect of using Metacognitive Strategies to Enhance Programming Performances 197

Discussion and Conclusions

In the higher education programming classrooms, many researchers addressed that
learning computer programming requires dealing with challenging problems. Since
they do not have enough experiences of the programming conceptual and operational
knowledge, they generally fail. In this study, meta-cognitive training via worksheets
were aimed to guide students how to solve programming problems and how to orga-
nize their knowledge for problem solving. In this study, students’ use of metacognitive
strategies was observed to be at an average level. It is observed that the knowledge of
cognition is developed more than the regulation of cognition, which is in accord with
other studies (Martinez, 2010). In this sense, the influence of the nature of the problem
and the problem solving background for the metacognitive strategy are the reasons for
the influence of the knowledge of cognition and regulation of cognition strategies in
this study.

The results of the study demonstrated that the metacognitive training provided to the
students helped them in improving their learning performance in computer programming.
With the contribution of the metacognition strategies in programming, the students’ pro-
gramming performances were developed at multistructural level. In the various studies
conducted within this context, a positive correlation was found between using metacog-
nitive strategies and programming performances (Antonietti, Ignazi, and Perego, 2000;
Carlson, and Bloom, 2005). In the weeks that knowledge of cognition and regulation of
cognition strategies developed more, programming performances also developed as the
level of relational and extended approach categories.

In the current study, we found that enhancing metacognition contributed to create
algorithms more easily allowing various solutions to develop. In this process, it is sup-
posed that the instructions given through the metacognition strategies, thinking about
the problem before solving the problem, and making plans made it easier to solve
the problems. As Teong (2003) concluded, making decisions based on meta-cognitive
strategies are signs of better problem-solving skills. The similar positive effect of
the use of metacognitive strategy on problem solving skills has been addressed by
various studies (An and Cao, 2014; Goldberg and Bush, 2003; Kapa, 2001; Kock and
Harskamp, 2014).

The development in programming performances and metacognition strategies de-
creased relatively in the last weeks. One reason for this may be that the advantages of
metacognitive strategies cannot be enabled when the problems are more complicated.
In this research, the fact that students needed to use both logical and mathematical
operations as well as their programming knowledge sometimes negatively affected
the development of programming performances. Towards the last weeks, the prob-performances. Towards the last weeks, the prob-
lems become more challenging and sophisticated. One other finding was that students
learned to think about the solutions first. The metacognitive support might have sup-
ported or sometimes directed them to think about the scope of the problem first rather
than the solution.

Ü. Çakiroğlu, B. Er198

The SOLO taxonomy was employed to investigate the development of programming
performances in this study. The use of SOLO taxonomy allowed the detailed examina-
tion of the development of programming performances. Some researchers also assert
that SOLO taxonomy corresponds to the nature of programming (Lister et al., 2006;
Sheard et al., 2008).

The study also has some certain limitations. First, this study was a small-scale study;
a further study is recommended with a larger group to provide different analysis tech-
niques for additional evidence. Second; the study was purposefully limited to 10 prob-
lems and focused on the potential of worksheet of metacognitive development related
with the problems. However, the problems which were constructed to have a progressive
structure of programming knowledge allowed the researchers to analyse the effect of the
intervention easily.

To conclude, supporting metacognition via worksheets positively influenced the de-
velopment of the metacognitive strategies and programming performances. Similar to
the other fields, mastering the science of cognition in programming field requires time.
Enriching the problem solving sessions via metacognitive interventions provided op-
portunities for the students to transfer their knowledge in other programming contexts
as well as providing the metacognitive knowledge concerning how to enhance their pro-
gramming skills.

Recommendations

The results of this study indicate that improving the metacognitive knowledge can facili-
tate programming learning and enhance programming performances in various extents.
In line with this result, some recommendations which might be applied in practice are
presented below.

While teaching programming, metacognition strategies might be utilized to help ●
students easily understand the complicated nature of programming.
It is important that the tools used to develop metacognitive strategies for program- ●
ming instruction include specific strategies about how to teach within the context
of the given content.
Due to the structure of the programming languages, instead of providing a sum- ●
mative evaluation, SOLO taxonomy can be used to evaluate the programming
performances when solving problems.
In this study, metacognition strategies were provided via the worksheet. Future ●
research might take teaching metacognition strategies via other instruments.
The nature of the programming problems affected the development and awareness ●
of the metacognitive strategies. Therefore, the relationship between the nature of
programming and the development of metacognitive strategy can be investigated
in future studies with this point of view.

We hope that the findings of this study would provide implications for programming
instructors who desire to provide better programming experiences through metacogni-
tive interventions.

Effect of using Metacognitive Strategies to Enhance Programming Performances 199

References

An, Y.J., Cao, L. (2014). Examining the effects of metacognitive scaffolding on students’ design problem solv-
ing and metacognitive skills in an online environment. Journal of Online Learning and Teaching, 10(4),
552.

Antonietti, A., Ignazi, S., Perego, P. (2000). Metacognitive knowledge about problem-solving methods. British
Journal of Educational Psychology, 70, 1–16.

Apiola, M., Tedre, M. (2012). New perspectives on the pedagogy of programming in a developing country
context. Computer Science Education, 22(3), 285–313.

Carlson, M.P., Bloom, I. (2005). The cycle nature of problem solving: An emergent multidimensional prob-
lem-solving framework. Educational Studies in Mathematics, 58, 4575.

Chalmers, Christina , Nason, Rodney A. (2005). Group metacognition in a computer-supported collaborative
learning environment. In: Looi, Chee-kit,Jonassen, David H., & Ikeda, M. (Eds.), Towards Sustainable and
Scalable Educational Innovations Informed by the Learning Sciences: Sharing Good Practices of Resear-
ch, Experimentation and Innovation. IOS Press, Amsterdam, 35–41.

Chen, G.D., Li, L.Y., Wang, C.Y. (2012). A community of practice approach to learning programming. Turkish
Online Journal of Educational Technology, 11(2), 15–26.

De Kock, W.D., Harskamp, E.G. (2014). Can teachers in primary education implement a metacognitive com-
puter programme for word problem solving in their mathematics classes? Educational Research and Eval-
uation, 20(3), 231–250.

Derry, S.J. (1992). Adaptative learning environments − foundations and frontiers. In: M. Jones and P.H. Winne
(Eds.), Metacognitive Models of Learning and Instructional Systems Design. Springer−Verlag Berlin Hei-
delberg: Nato ASI Series Books, pp. 257−286.

Flavell, J.H. (1976). Metacognitive aspects of problem solving. In: L.B. Resnick (Ed.), The Nature of Intel-
ligence. Hillsdale, NJ: Lawrence Erlbaum, 231–235.

Ford, J.L. (2007). Programming for the Absolute Beginner. Boston, MA, USA: Course Technology.
Goldberg, P.D., Bush, W.S. (2003). Using metacognitive skills to improve 3rd graders’ math problem solving.

Focus on Learning Problems in Mathematics, 5(10), 29–48.
Gundurao, H.K., Manjunath, N.S., Nachappa, M.N. (2010). Computer Technology and Computer Program-

ming. Mumbai, IND: Global Media.
Hartley, K. (2001). Learning strategies and hypermedia ınstruction. Journal of Educational Multimedia and

Hypermedia, 10(3), 285–305.
Hartman, H.J. (2001). Teaching metacognitively. In: H.J. Hartman (Ed.), Metacognition in Learning and In-

struction: Theory, Research and Practice. Dordrecht: Kluwer Academic Publishers, Boston, 149–172.
Helminen, J., Malmi, L. (2010, October). Jype-a Program Visualization and Programming Exercise Tool for

Python. Paper presented at the 5th international symposium on Software visualization. New York, USA,
153–162.

Kafai, Y., Resnick, M., MaLoney, J. (2009). Scratch: Programming for all. Communications of the Acm,
11(52), 60–67.

Kapa, E. (2001). A metacognitive support during the process of problem solving in a computerized environ-
ment. Educational Studies in Mathematics, 47(3), 317–336.

Kayashima, M., Inaba, A., Mizoguchi, R. (2004). What is metacognitive skill? Collaborative learning strat-
egy to facilitate development of metacognitive skill. In: L. Cantoni., C. McLoughlin (Eds.), Procedia of
World Conference on Educational Multimedia, Hypermedia and Telecommunications. Lugano, Switzer-
land, 2660–2665.

Lee, C.B., Teo, T., Bergin, D. (2009). Children’s use of metacognition in solving everyday problems: An initial
study from an Asian context. The Australian Educational Researcher, 36(3), 89–102.

Lin, X., Schwartz, D.L., Hatano, G. (2005). Toward teachers adaptive metacognition. Educational Psycholo-
gist, 40(4), 245–255.

Linn, M., Dalbey, J. (2013). Cognitive consequence of programming instruction. In Soloway, E., and Spohrer,
J.C. (Eds.), Studying the novice programmer. Psychology Press, Hillsdale, 57–81.

Linn, M.C., Clancy, M.J. (1992). The case for case studies of pro-gramming problems, Communications of
the ACM, 35, 121–132.

Lister, R., Simon, B., Thompson, E., Whalley, J.L., Prasad, C. (2006). Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. Paper presented at the 11th Annual Innovation and Technology in
Computer Science Education, Italy, 118–122.

Ü. Çakiroğlu, B. Er200

Mann, M., Treagust, D.F. (1998). A pencil and paper ınstrument to diagnose students conception of breathing,
gas exchange and respiration. Australian Science Teachers Journal, 44(2), 55–59.

Martinez, R.E. (2010). The Use of Metacognitive Tool in an Online Social Supportive Learning Enviroment:
An Activity Theory Analysis (Unpublished doctoral thesis). University of Missouri, St. Louis, USA.

McCormick, C.B. (2003). Metacognition and learning. In: W.M. Reynolds, and G.E. Miller (Eds.), Handbook
of Psychology: Educational Psychology. Hoboken: Wiley, 79–102.

Park, O. (1992). Instructional applications of hypermedia: Functional features, limitations, and research ıssues.
Computers in Human Behavior, 8, 259–272.

Patton, M.Q. (2014). Nitel Araştırma ve Değerlendirme Yöntemleri. (M. Bütün & S.B. Demir, Çev). Ankara:
Pegem Akademi.

Robins, A., Rountree, J., Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137–172.

Rum, S.N.M., Ismail, M.A. (2014). Usability evaluation of metacognitive support system for novice program-
mers. Asian Journal of Education and e-Learning, 2(5). Retrieved November 19, 2018 from http://ajouron-
line.com/index.php/ AJEEL/article/view/1819.

Salomon, G., Perkins, D.N. (1989). Rocky roads to transfer: Rethinking mechanisms of a neglected phenome-
non. Educational Psychologist, 24, 113–142.

Schraw, G., Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371.
Sheard J., Carbone A., Lister R., Simon B., Thompson E., Whalley J.L. (2008). Going SOLO to assess novice

programmers. ACM SIGCSE Bulletin. 40(3), 209–213.
Storey, S. O. (2004). Teacher Questioning to Improve Early Childhood Reasoning (Unpublished doctoral

thesis). University of Arizona, Tucson, Arizona.
Tan, K.C.D., Goh, K.N., Chia, S.L., Treagust, D.F. (2002). Development and application of a two-tier multiple

choice diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualita-
tive analysis. Journal of Research in Science Teaching, 39(4), 283–301.

Treagust, D.F. (1988). Development and use of diagnostic tests to evaluate students’ misconception in science.
International Journal of Science Education, 10(2), 159–169.

Whalley, J.L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P., Prasad, C. (2006). An Australasian
study of reading and comprehension skills in novice programmers, using the bloom and SOLO taxono-
mies. In: Proceedings of the 8th Australasian Conference on Computing Education-Volume 52. Australian
Computer Society, Inc., pp. 243–52.

Veenman, M.V.J. (2005). The assessment of metacognitive siklls: What can be learned from multi-method de-
signs?. In: B. Moschner, C. Artelt (Eds.) Lernstrategien und Metakognition: Implikationen für Forschung
und Praxis. Berlin: Waxmann, 75–97.

Yin, R.K. (2003). Case study research: Design and methods. (3rd ed.). Thousand Oaks, CA: Sage.
Zapu ek, M., Rugelj, J. (2013). Applying ideas from intelligent tutoring systems for teaching programming in

game based learning. Paper presented at the 7th European Conference on Games Based Learning. Porto,
Portugal, 11–20.

Ü. Çakiroğlu PhD is a full professor of Computer and Instructional Technologies at
Trabzon University, Turkey. His research interests include instructional technologies
and computer science education. His academic specialty is instructional technologies,
learning analytics, artificial intelligence in education and methods for teaching pro-
gramming and robotics.

B. Er is a PhD student at Computer and Instructional Technologies at Trabzon Univer-
sity, Turkey. Her research interests include programming instruction and instructional
technologies, and her academic speciality include instructional design, and technology
integration.

