
Informatics in Education, 2016, Vol. 15, No. 2, 163–182
© 2016 Vilnius University
DOI: 10.15388/infedu.2016.09

163

Introductory Programming Subject in European
Higher Education

Veljko ALEKSIĆ1, Mirjana IVANOVIĆ2

1Faculty of Technical Sciences, University of Kragujevac
Svetog Save 65, Čačak, Serbia
2Faculty of Sciences, University of Novi Sad
Trg Dositeja Obradovića 4, Novi Sad, Serbia
e-mail: veljko.aleksic@ftn.kg.ac.rs, mira@dmi.uns.ac.rs

Received: January 2016

Abstract. Programming is one of the basic subjects in most informatics, computer science math-
ematics and technical faculties’ curricula. Integrated overview of the models for teaching pro-
gramming, problems in teaching and suggested solutions were presented in this paper. Research
covered current state of 1019 programming subjects in 715 study programmes at total of 218
faculties and 143 universities in 35 European countries that were analyzed. It was concluded that
while most of the programmes highly support object-oriented paradigm of programming, intro-
ductory programming subjects are mainly based on imperative paradigm.

Keywords: programming, teaching, higher education.

1. Introduction

Framework for teaching specific programming language and/or appropriate tools at
higher education is primarily defined by the competencies that students need to master
and teaching methodology and learning model that are defined by the particular institu-
tion and teacher. While programming is seen as a single activity for specific domain,
in reality it presents different sequence of activities directed towards wide specter of
problem solving. Term Programming in informatics/computer education is widely ac-
cepted as gaining and application of problem solving skills, so teachers feel that devel-
opment of those should be the foundation in curricula creation. Tremendous constant
development of computer science and ICT creates permanent problem of continuously
changing programming languages, techniques and tools within programming courses.
However, there are important concepts that stay as essential/fundamental over the time,
such as control structures, procedures, pointers, dynamic variables, parameter passing
techniques, etc.

V. Aleksić, M. Ivanović164

Programming in the narrow sense represents the activity of problem understanding
and analysis, application of adequate algorithms and its implementation in the form
understandable to the computer. Most common method of implementation constitutes a
set of instructions using programming language such as C, C++, Java, Python, PHP etc.
Depending on the problem, in real environments these activities can include one or more
programmers with different knowledge and specializations.

Variety of programming languages are available for study in the introductory pro-
gramming, so unique choice of language would be at least controversial. Different com-
puter techniques and programming languages and tools have been developing rapidly
over the last two decades, so programmers in their career have to use more different
programming languages than ever before. Although the adoption of practical program-
ming skills is the base for teaching certain programming languages, it is more impor-
tant to highlight that essential understanding of basic theoretical concepts and critical
thinking are more important to novice programmers so that they can prepare for later
studying of new languages and tools. Fast technology changes more or less influence
teaching of introductory programming courses due to the need for teaching content to
be up-to-date. Programming courses are often perceived as one of the “most difficult”
classes in higher education. As Comenius (1957) defined didactical triangle of factors
in teaching process, problem of teaching programming can actually be observed from
the angle of content, teachers and students.

According to Rahmat et al. (2012) content that is being studied is new for most
of students, which makes the subject difficult. Programming is a hierarchical skill in
which mastery students gradually acquire new knowledge by increasing complexity.
For example, student must first master the basic syntax, and then semantics, struc-
tures and programming styles. Curricula’s are often very demanding and extensive,
so students do not have the time to master the content before a new one is introduced.
The programming process begins by translating the algorithm into the code. Before
that, the hardest part is to analyze and understand the problem, and then to translate
the required specification into algorithm. The correct algorithm is the basis of the cor-
rect program code, so students have to be able to design and translate algorithms and
know the proper program syntax. Most programming languages are designed for the
industry – not for teaching, hence the choice of the “proper” educational programming
language is difficult.

Students’ interest and motivation are important factors as well. While certain ele-
ments may be affected by the teacher, motivation and learning styles are completely in-
dividual. To ensure efficient knowledge transfer, teachers must be adapted to conditions
such as group size, timing and duration of the lectures.

The rest of the paper is organized as follows. Section 2 presents a closer examination
of different perspectives on adequate paradigm and programming language selection in
introductory programming courses. Further, we emphasized some of the main problems
and possible solutions in programming teaching practice. An empirical study presents
the variety of introductory programming languages taught in European tertiary educa-
tion institutions, and its structure were further discussed in Section 4. The last section
gives final remarks on the topic.

Introductory Programming Subject in European Higher Education 165

2. Selecting the First Programming Language

During the long history of teaching programming skills and languages there has been
developed different criteria for the selection of the first programming language that
should be respectable, appropriate and accepted by teachers and students (Kaplan, 2010;
Mclver and Conway, 1996; Parker et al., 2006; Thomas et al., 2002). Meanwhile, three
clearly distinguished paradigms are recognized and separated: imperative (or procedur-
al), object-oriented and functional.

2.1. Programming Paradigms

Although different programming languages can successfully implement imperative
(procedural) paradigm, typical representatives are C, Pascal, Basic etc. Top-down de-
sign methodology for program development is the basis of this approach. Weisert (1997)
stated that programming building blocks are procedures, while functions are created to
realize smaller tasks and communicate with other functions through parameters, argu-
ments and return values. Main advantage of procedural approach lies in its simplicity.
According to Deitel and Deitel (2011) it is not necessary to introduce students to mul-
titude terms in the beginning, so teachers may begin with syntax and logic right away.
However, procedural approach has clear drawbacks. Modern trends in methodology of
teaching programming languages are more and more oriented to object-oriented para-
digm (Böszörmenyi, 2005). According to Ivanović and Budimac (2013) “it is extremely
important to introduce essential/key concepts of programming like: procedures, records,
pointers, as a good base for better understanding of concepts in object-oriented, Parallel,
WEB programming which will be taught later in subsequent courses”.

With object-oriented paradigm, program design is focused on objects, their attributes
and relations and interactions between them. Typical object-oriented programming lan-
guages are C++, C#, Java, Python etc. Main advantage of teaching object-oriented pro-
gramming approach for introductory programming course is that students learn consis-
tent methods of program development that are widely used in modern software industry
(Chen, 2004). Other advantages are simple program modification, extensibility through
inheritance and the fact that same objects can be reused in different programming solu-
tions (Wang, 2003). Due to its relative high complexity, this approach can be difficult to
be realized in introductory programming courses. Wide range of new diverse concepts
and terms must first be introduced, often with rather complex examples, so the syntax
is a little bit postponed to be taught later in the course. However, there is an increas-
ing number of faculties that apply object-oriented as a first approach in introductory
programming courses by using Java programming language. Even though this choice
of programming language has many advantages, it should be bared in mind that basic
programming concepts are applied mostly indirectly. This can be the reason that sig-
nificant number of Universities today still implement “natural” sequence of learning the
essential programming concepts first (with C), which are later upgraded through object-
oriented approach and appropriate programming languages (C++ or Java).

V. Aleksić, M. Ivanović166

Functional paradigm is rarely used in introductory programming courses, as it lacks
control over the exact way in which the computation is carried out, and is subsequently
more suitable for advanced programming. These languages are usually chosen for theo-
retically/mathematically oriented study programmes. Typical modern representative of
functional programming paradigm is Haskell programming language.

Visual approach in teaching introductory programming is also one of the methodical
challenges. It is based on usage of graphical user interface from the beginning (Bradley
et al., 2002). Every programing example is explained and program input/output is shown
using graphical objects (panels). Even though this approach could be preferred as it
relies on modern operating system interfaces, its realization demands extensive time to
explain the user interface instead of teaching essential programming concepts.

According to Bordini et al. (2006) Integrated Development Environments (IDEs)
focus on the programming language level and intend to enhance the productivity by au-
tomating tedious coding tasks. Looking at current IDEs for the object-oriented domain
it can be seen that such IDEs tend to provide functionalities that can be classified into
five categories:

Project management (organizing the project structure according to developers’ ●●
needs).
Creating and editing source files (providing structure views for quick and easy ●●
navigation, online error detection, auto-completion, and so on).
Refactoring to enable fast and reliable code restructuring operations. ●●
Build and run process allowing the execution of applications from within the IDE. ●●
Testing developed programs (supported by unit testing with test cases).●●

Despite the benefits, which are reflected in the multitude of resources that facilitate
course realization, the main challenge for teachers who teach introductory program-
ming courses is how to teach problem solving and develop critical thinking by using
algorithms. Polya (1957) observed problem-solving process through four stages: un-
derstanding the problem, solution planning, its execution and reflection on the results.
Introductory programming should assist students in acquisition of problem solving skills
parallel to studying principles of particular programming languages.

Freund et al. (2010) stated that the availability of so many languages and models
means that students are supposed to make proper choices about which programming lan-
guage to use for solving specific programming tasks. Even computer-integrated manu-
facturing systems are now rarely built entirely in only one language. Instead, they are the
composition of various components, each written in a language chosen for its strengths
in that component’s particular problem domain. For example, a web application may
include database queries written in SQL, server application logic written in Java, data
transformers written in XSLT, and client-side code written in JavaScript.

Key finding of Meyerovich and Rabkin (2013) research was that in order to improve
developer versatility, students should be exposed to diverse language families while
they are still at school. Past school experience moderately influenced the languages that
respondents knew later on. The vast majority of respondents know C or Java, regardless
of study programme or curriculum. Education leads to increased likelihood of knowing
a language, but only within a 10% increase. Less-popular language families (assembler,

Introductory Programming Subject in European Higher Education 167

functional, and mathematical languages) are much more sensitive to the form of prior
education. Developers usually learn new languages throughout their career, but are less
likely to learn new paradigms.

Jablonowski’s case study (2007) illustrated clear drawbacks of using Java (and indi-
rectly C++) as introductory programming language, even though it is a great language
with lots of applications and powerful IDE’s. It was concluded that “the language of
choice” for introductory programming course could/should be Pascal.

The authors of this paper support this conclusion, in fact the need to teach introduc-
tory programming using some of the educational programming languages.

2.2. Teaching Programming

According to Gomes and Mendes (2007) there are various types of problems in teaching
programming, such as teaching methods, learning styles, students’ skills and attitudes
and psychological effects.

Traditional teaching methods do not seem to be adequate when it comes to meeting
the needs of students. Individualized instruction model represents one of the ideal ways
in teaching programming, but in reality it is not feasible due to time and financial con-
straints. One solution could be the usage of a computer tutor and specially developed
personalized tutoring system (Butz et al., 2004; Vesin et al., 2012, 2013). Although it
could not completely replace the teacher, it could have a positive effect on students’
motivation. Teaching strategies often do not consider all the learning styles of students.
In the traditional face-to-face teaching all students must advance at the same pace and
in line with teachers’ pedagogical strategies that are based on teachers’ learning style.
This problem can be overcome by creating various presentation formats for each ac-
tivity and by adapting interaction to students’ characteristics. At the beginning of the
course, students should complete one of the variety of questionnaires based on the
Kolb’s (2005) or Felder-Silverman’s (1988) learning style model. The survey results
can later be used in the LMS environment implementation in order to try to prepare
teaching material more or less according to well-known learning styles. The purpose of
the introductory programming course should be to improve and enhance students’ pro-
gramming skills. However, students and teachers are often more focused on pure syntax
and technical thinking. On the other hand, usual opinion is that programming language
should be used only as a tool to realize ideas and algorithms. Hence, the choice of
“first” programming language should be based on “pedagogical benefits” rather than
on its popularity.

Many students have learned to solve problems in other disciplines by memorizing
formulas and procedures. They often do this without a complete understanding of the es-
sence of concepts and problems. Since the programming is oriented to critical thinking,
problem solving, but also gaining practical skills, students often mistakenly believe that
it can be mastered mainly by studying textbooks without intensive practicing. This can be
prevented by providing frequent opportunities during regular classes as well as in order
to solve practical and real problems.

V. Aleksić, M. Ivanović168

Problem solving requires a variety of skills that students often do not ad hoc possess
sufficiently: understanding the problem, knowledge transfer, reflective thinking and per-
severance. The teacher should ask the students to predict the results of certain activities,
set new tasks to address some of the procedures used in previous solutions etc. Learning
how to program requires abstraction and generalization abilities, and critical thinking.
Accordingly, it is important to provide an environment that facilitates the development
of these students’ capacities. It is important to recognize patterns in various problems
in order to develop generalizations. Programming languages are mostly developed for
professional use, which result in notably complex structures and syntax. This fact can
be prevented by using high quality programming environments and tools that allow stu-
dents to be focused on solutions, not on syntax.

Many secondary school students lack motivation to enroll CS studies due to the
negative general opinion about programming that is spread among them. Jenkins (2002)
emphasizes that there is a public image of the programmer as socially inadequate “nerd”.
If students take the predisposition that course will be difficult, it is hard to imagine that
they will be motivated to work, and students that are not motivated are often not success-
ful (Ng and Bereiter, 1991). In order to increase the motivation, it is useful to implement
a multimedia environment and learning through playing and gaming. It is important to
show students how to use programming and general ICT knowledge in order to facilitate
the society’s quality of life (Ulrich and Karvonen, 2011). As the introductory program-
ming subject is mandatory for many other related subjects, it needs to be included in the
curriculum as early as possible, ideally in the first or second semester.

Azad and Kohun (2009) point out many challenges facing teachers in subject real-
ization such as: the different students’ background, programming seems difficult and
complicated for most students, too much time is spent in the study of language syntax,
inability to see results before correcting errors, lack of motivation, most programming
environments were designed for professional use and as such are impractical for begin-
ners’ usage. It is difficult to propose a simple solution to overcome these challenges.

The first and rather crucial obstacle in teachers’ work is a proper choice of first pro-
gramming language because the teaching of syntax is one of the initial and basic peda-
gogical goals. According to Kolling (1999), choice of programming language is less
important than the question as to what to teach, and finding balance between mastery of
syntax, design and problem solving skills.

Programming courses need to be constantly innovated to accommodate the new gene-
rations of students who have grown up with computer technology, games and interactive
user interfaces (McKenzie, 2009). If students have a positive experience when they first
face programming activities and processes they are motivated to acquire good program-
ming habits and develop programming skills through self-learning (Pendergast, 2006).

3. Related Work

In spite of the importance of the topic, relatively few studies empirically analyze usage of
programming languages within first programming courses in higher education institutions.

Introductory Programming Subject in European Higher Education 169

Nowadays, curriculum developers can be divided into four groups concerning the
attitude towards selection of first programming paradigm and language. The first group
is in favor of object-oriented paradigm through Java, C++ or C#; second group are
those who support the imperative style using C, Pascal or Modula-2; the third group
advocates functional programming through Haskell; and the fourth group, which is in
favor of competitive and script programming languages such as Python (Watt, 2004).
Just as there is a disagreement over the choice of programming language, there is a dis-
agreement about the teaching methods, especially among advocates of object-oriented
approach. One group of teachers advocate the early introduction to objects, classes and
inheritance, while the others argue that it is better to first study procedural aspects of
the programming language first and then proceed with object-oriented concepts.

Chalk and Fraser (2006) did a research which included 44 higher education institu-
tions in UK and concluded that 60% of 4800 surveyed students were taught Java as first
programming language, while 15% of them studied C++ and C#. Python and Haskell
together were represented by 6%.

Mason et al. (2012) published results of their survey in 2010 which covered 28
Australian universities and 44 introductory programming curricula. It was stated that
20 various programming languages were taught among which the most common was
Java (36%), following Python (19%) and C (12%). Considering the results of the
previous 2003 and 2006 surveys, they noticed a trend of slight usage decrease of
the Java (from 40% to 36%), and significantly Visual Basic (from 25% to 9%) and
C++ (from 14% to 7%). The biggest breakthrough was done by Python, which was
statistically insignificant in previous surveys. Part of their study analyzed reasons for
the choice of first programming language and concluded that the crucial factor was
no longer industry usage, but the pedagogical benefits it provided. As the paradigm,
55% of courses were based on procedural, 25% were based on object-oriented, 2%
were based on functional, and the rest 18% applied some combination of paradigms.
Most popular IDE’s used in first programming courses were Visual Studio (28%) and
BlueJ (18%).

4. Results and Discussion

The main objective of our research was to establish a clear empirical answer on the
question of which programming languages are mainly taught at European tertiary
education institutions, especially in introductory programming courses. The research
sample consisted of 143 European representative universities out of 35 countries. In
total, 218 faculties with 715 study programmes and 1019 programming subjects were
included in the analysis. All the research data were acquired directly from faculties’
online accreditation documents, curricula’s and study programmes. Data acquisition
was done in six-month period of 2015. It should be noted that research considered
only state universities with academic level of studies and subjects in the first and
second year of study. Table 1 provides a list of universities and faculties from which
data were acquired.

V. Aleksić, M. Ivanović170

Table 1
Overview of the research sample structure

Coun-
try

University Faculty/Department No. of
Study
Prog.

1 2 3 4

A
us

tri
a

University of Vienna Faculty of Informatics 21

Vienna University of Technology Faculty of Electrical Engineering and IT
Faculty of Mathematics and Geoinformation
Faculty of Computer Science

University of Innsbruck Faculty of Mathematics, Computer Science and
Physics

Graz University of Technology Faculty of Electrical and Information Engineering
Faculty of Technical Mathematics and Technical

Physics
Faculty of Computer Science

B
el

ar
us

Belarusian State University Department of Applied Mathematics and
Computer Science

13

Belarusian National Technical University Faculty of Information Technology and Robotics

University of Informatics and
Radioelectronics

Faculty of Information Technology and
Management

Yanka Kupala State University of Grodno Faculty of Mathematics and Computer Science

Polotsk State University Faculty of Information Technology

B
el

gi
um

Catholic University of Leuven Faculty of Sciences 14

University of Liége Faculty of Applied Sciences

University of Antwerp Faculty of Sciences

Ghent University Faculty of Engineering and Architecture

B
os

ni
a

an
d

H
er

ze
go

vi
na

University of Sarajevo Faculty of Electrical Engineering
Faculty of Natural Sciences and Mathematics

19

University of Tuzla Faculty of Electrical Engineering
Faculty of Science

University of Mostar Faculty of Science and Education

B
ul

ga
ria

University of Sofia “St. Kliment
Ohridski”

Faculty of Mathematics and Informatics 24

Technical University – Sofia Faculty of Electrical Engineering
Faculty of Applied Mathematics and Informatics
Faculty of Computer Systems and Control

Ruse University Faculty of Electrical Engineering and Automation
Faculty of Natural Science and Education

Plovdiv University Faculty of Mathematics, Informatics and
Information Technology

Technical University of Varna Department of Communication Technics and
Technology

Department of Computer Science and Technology

Burgas Free University Faculty of Computer Science and Engineering

Introductory Programming Subject in European Higher Education 171

1 2 3 4

C
ro

at
ia

University of Zagreb Faculty of Science
Faculty of Electrical Engineering and Computing

25

University of Rijeka Faculty of Engineering
Department of Informatics

JJ Strossmayer University of Osijek Faculty of Electrical Engineering
Department of Mathematics

C
ze

ch

R
ep

ub
lic

Czech Technical University in Prague Faculty of Information Technology 18

Masaryk University Faculty of Informatics

Brno University of Technology Faculty of Information Technology

University of Ostrava Faculty of Science

D
en

m
ar

k

University of Copenhagen Department of Computer Science
Department of Mathematics

19

Aarhus University Department of Computer Science

Aalborg University Department of Computer Science

Technical University of Denmark Department of Mathematics and Computer
Science

Es
to

ni
a University of Tartu Faculty of Science and Technology 15

Tallin University of Technology Faculty of Information Technology

Tallin University Institute of Informatics

Fi
nl

an
d

University of Helsinki Faculty of Science 18

Tampere University of Technology Faculty of Computing and Electrical Engineering

University of Jyvasyla Faculty of Information Technology

University of Turku Faculty of Mathematics and Natural Sciences

University of Tampere School of Information Sciences

Fo
rm

er
 Y

ug
os

la
v

R
ep

ub
lic

 o
f M

ac
ed

on
ia

(F
Y

R
O

M
)

Ss. Cyril and Methodius University of
Skopje

Faculty of Computer Science and Engineering
Faculty of Electrical Engineering and Information

Technologies
Faculty of Mechanical Engineering
Faculty of Natural Sciences and Mathematics
Faculty of Civil Engineering

31

Goce Delcev University of tip Faculty of Computer Science
Faculty of Electrical Engineering
Faculty of Natural and Technical Sciences

Fr
an

ce

Pierre and Marie Curie University Faculty of Engineering
Faculty of Mathematics

27

Claud Bernard University Lyon I Faculty of Science and Technology

University of Nice – Sophia Antipolis Faculty of Sciences

University of Caen Lower Normandy Faculty of Science

University of Paris 1 Pantheon –
Sorbonne

Department of Mathematics and Computer
Science

V. Aleksić, M. Ivanović172

1 2 3 4

G
er

m
an

y

Technical University of Berlin Faculty of Electrical Engineering and Computer
Science

31

Free University of Berlin Department of Mathematics and Computer
Science

Humboldt University of Berlin Faculty of Mathematics and Natural Sciences

University of Munich Department of Mathematics, Computer Science
and Statistics

University of Heidelberg Faculty of Natural Sciences, Mathematics and
Computer Science

University of Hamburg Faculty of Mathematics, Computer Science and
Natural Sciences

University of Leipzig Faculty of Mathematics and Computer Science

G
re

ec
e

Aristotle University of Thessaloniki Faculty of Sciences 21

University of Athens Faculty of Informatics and Telecommunications

Technical University of Athens School of Electrical and Computer Engineering

University of Crete School of Sciences and Engineering

H
un

ga
ry

Eötvös Loránd University Faculty of Informatics
Faculty of Science

16

Budapest University of Technology and
Economics

Faculty of Electrical Engineering and Informatics
Faculty of Science

University of Miskolc Faculty of Mechanical Engineering and IT

University of Pécs Faculty of Engineering and Information Tech.
Faculty of Science

Ir
el

an
d

Trinity College Dublin Faculty of Engineering, Mathematics and Science 23

University College Dublin School of Computer Science and Informatics

University College Cork Department of Computer Science

University of Limerick Department of Computer Science and
Information Systems

Dublin City University Faculty of Engineering and Computing
School of Computing

National University of Ireland, Galway College of Engineering and Informatics

Ita
ly

University of Bologna School of Engineering and Architecture 22

Sapienza University of Rome Faculty of Inform. engineering, Computer
Science and Statistics

University of Pisa Department of Computer Science
Department of Information Engineering

University of Padua School of Engineering
School of Science

Polytechnic University of Milan Department of Electronics, Informatics and
Bioengineering

Introductory Programming Subject in European Higher Education 173

1 2 3 4

La
tv

ia

University of Latvia Faculty of Computing 15

Riga Technical University Faculty of Computer Science and Information
Technology

Vidzeme University of Applied Sciences Faculty of Engineering

Daugavpils University Faculty of Natural Sciences and Mathematics

Li
th

ua
ni

a

Vilnius University Faculty of Mathematics and Informatics 16

Kaunas University of Technology Faculty of Informatics

Vytautas Magnus University Faculty of Informatics

Vilnius Gediminas Technical University Faculty of Electronics
Faculty of Fundamental Sciences

N
et

he
rla

nd
s

University of Twente Department of Computer Science 17

Ultrecht University Faculty of Science

Leiden University Institute of Advanced Computer Science

Eindhoven University of Technology Department of Mathematics and Computer
Science

Delft University of Technology Faculty of Electrical Eng., Mathematics and
Computer Sciences

University of Amsterdam Faculty of Science

N
or

w
ay

Norwegian University of Science and
Technology

Faculty of IT, Mathematics and Electrical
Engineering

Faculty of Science and Technology

20

University of Oslo Faculty of Mathematics and Natural Sciences

University of Bergen Faculty of Mathematics and Natural Sciences

University of Tromsø Faculty of Science and Technology

M
ol

do
va Moldova State University Faculty of Mathematics and Informatics 8

Moldova Technical University Faculty of Computers, Informatics and
Microelectronics

M
on

te
ne

gr
o University of Montenegro Faculty of Electrical Engineering

Faculty of Mechanical Engineering
Faculty of Natural Sciences and Mathematics

9

Po
la

nd

AGH University of Science and
Technology

Department of Computer Science 18

Jagiellonian University Department of Mathematics and Computer
Science

Warsaw University of Technology Faculty of Electronics and Information
Technology

Faculty of Mathematics and Information Science

Gdansk University of Technology Faculty of Electronics, Telecommunications and
Informatics

V. Aleksić, M. Ivanović174

1 2 3 4
Po

rtu
ga

l

University of Porto Faculty of Sciences
Faculty of Engineering

15

University of Coimbra College of Science and Technology

University of Minho School of Engineering
School of Sciences

Technical University of Lisbon Faculty of Sciences
Institute of Superior Technics

R
om

an
ia

Universitatea Alexandru Ioan Cuza Faculty of Computer Science
Faculty of Mathematics
Faculty of Physics

27

Babes-Bolyai University Cluj-Napoca Faculty of Mathematics and Informatics

Technical University of Cluj-Napoca Faculty of Automation and Computer Science
Faculty of Electronics, Telecommunications and IT

West University of Timisoara Faculty of Mathematics and Informatics

Technical University of Iasi Faculty of Automation and Computers
Faculty of Electronics, Telecommunications and IT

Politehnica University of Timisoara Faculty of Computer Science

R
us

si
a

Moscow State University Faculty of Computational Mathematics and
Cybernetics

33

Novosibirsk State University Department of Information Technologies

St. Petersburg State Polytech. University Institute of Computing and Control

Tomsk State University Faculty of Informatics

Southern Federal University Faculty of Automation and Computer
Engineering

Faculty of Mathematics, Computer Science and
Physics

Faculty of Mathematics and Computer Science

Se
rb

ia

University of Belgrade Faculty of Electrical Engineering
Faculty of Transport and Traffic Engineering
Faculty of Organizational Sciences
Faculty of Mathematics
Faculty of Physics

36

University of Novi Sad Faculty of Technical Sciences
Faculty of Sciences
Faculty of Education

University of Niš Faculty of Electronic Engineering
Faculty of Sciences and Mathematics

University of Kragujevac Faculty of Natural Sciences and Mathematics
Faculty of Engineering
Faculty of Technical Sciences

Sl
ov

ak
ia

Comenius University in Bratislava Faculty of Mathematics, Physics and Informatics 16

Slovak University of Technology
Bratislava

Faculty of Electrical Engineering and Informatics
Faculty of Informatics and Information

Technologies

University of Žilina Faculty of Management Science and Informatics

Constantine the Philospher University Faculty of Natural Sciences

Introductory Programming Subject in European Higher Education 175

1 2 3 4

Sl
ov

en
ia

University of Ljubljana Faculty of Electrical Engineering
Faculty of Mathematics and Physics
Faculty of Computer and Information Science

9

University of Maribor Faculty of Electrical Engineering and Computer
Science

Sp
ai

n

Complutense University of Madrid Faculty of Information Technology and Computer
Science

Faculty of Mathematical Sciences

27

Technical University of Madrid Faculty of Computer Sciences

University of Seville Faculty of Mathematics
Higher Polytechnic School
Higher Technical School of Computer

Engineering

Technical University of Barcelona School of Mathematics and Statistics
Image Processing and Multimedia Technology

Centre
Manresa School of Engineering
Barcelona School of Informatics
Vilanova School of Engineering
Mataró College of Engineering
Barcelona School of Telecommunications Eng.
Terrassa School of Engineering

Sw
ed

en

Linkoping University Institute of Technology 28

KTH Royal Institute of Technology School of Computer Science and Communication
School of Education and Communication in

Engineering Science
School of Electrical Engineering
School of Information and Communication Tech.

Uppsala University Department of Information Technology

University of Gothenburg Faculty of Science
IT Faculty

Sw
itz

er
la

nd

Swiss Federal Institute of Technology Department of Information Technology and
Electrical Eng.

Department of Computer Science

14

University of Geneve Faculty of Science

University of Bern Faculty of Science

U
kr

ai
ne

Taras Shevchenko National University Department of Cybernetics 18

National Technical University of Ukraine Faculty of Information Science and Computer
Engineering

Percarpathian University Department of Mathematics and Computer
Science

Lviv Polytechnic National University Institute of Computer Science and Information
Technology

V. Aleksić, M. Ivanović176

1 2 3 4
U

ni
te

d
K

in
gd

om

University of Oxford Department of Computer Science
Department of Engineering Science
Mathematical Institute

30

University of Cambridge Faculty of Engineering
Faculty of Computer Science and Technology

University of Edinburgh College of Science and Engineering
School of Informatics

University College London Department of Computer Science

University of Glasgow College of Science and Engineering

Imperial College London Faculty of Engineering

Table 2 provides an overview of the programming languages used in introductory
programming courses within ICT studies in representative European universities for
the 2014/2015 school year. Results were obtained based on the analysis of the repre-
sentation of various programming languages in teaching subjects. Curricula analysis of
reviewed 715 study programmes implies that programming courses are primary taught
at faculties that belong to the fields of natural sciences, technics and technology. Most
curriculums provide the study of introductory programming (also called Introduction to
Programming, Programming Languages, Programming, Programming Fundamentals,
Principles of Programming, Programming Techniques etc.) in the first semester, after
which one or more object-oriented programming languages (similar name cases) are
taught. The research did not include 3rd and 4th year of studying, but it anticipates that
software-oriented curricula’s have developed courses that consider programming in
certain specific areas (hardware, web, etc.). Study of programming in European coun-
tries is mostly software engineering oriented, with significant participation of object-
oriented languages.

Based on performed analysis we come to several conclusions.

Conclusion 1: It was concluded that three programming languages have the leading
role: C (30.6%), C++ (21.9%) and Java (20.7%). Weekly average hours for teach-
ing these languages is 2.0 + 1.5 + 1.1 (Lectures + Practice + Laboratory) which is
consistent with the presumption that in courses dealing with introductory program-
ming significant time is allocated to study theory due to its characteristics and target
objectives.

Conclusion 2: Key finding of the research is that introductory programming language
that was most often taught in the 1st semester is C (45.7%), followed by C++ (15%),
Java (8.3%), Pascal (7.7%) and Python (5.6%). Although C++ is the language of choice
of most (32.8%) 2nd semester curricula’s, there still was a significant share of courses
that taught C (28.9%) and Java (16.1%). Java is clearly the most common program-
ming language in 3rd and 4th semester, represented in 39% and 35% of the courses,
respectively.

Introductory Programming Subject in European Higher Education 177

Conclusion 3: Analysis of paradigm representation among programming languages
that were taught resulted in following structure: 53.7% object-oriented, 36.8% impera-
tive and 1.8% functional. Results are shown on Fig. 1.

Conclusion 4: When the correlation between European regions and participation of
programming languages that were taught was analyzed, we came to conclusion that
universities from Central and Eastern-European countries mainly based their study
programmes on teaching C and C++ programming languages, while programmes of
the Scandinavian universities were mainly based on Java. This grouping is probably
the consequence of cultural, economic, political, historical, and, indirectly, educational
link between these countries. University programmes of Western and South-European
countries were heterogeneous but strongly object-oriented, except in France and Bel-

Table 2
Summary representation of programming languages at universities in Europe

Programming
language

Semester Weekly Avg.
(Lec+Pra+Lab)I II III IV Σ

C 155 96 39 20 310 2.2 + 1.2 + 1.1
C++ 51 110 34 29 224 2.1 + 1.7 + 1.4
Java 28 54 78 52 212 2.2 + 1.7 + 0.7
C# 5 12 12 21 50 1.8 + 2.0 + 1.3
Pascal 26 12 3 – 41 2.3 + 2.1 + 0.8
Python 19 8 1 1 29 1.9 + 1.2 + 1.0
MatLab 4 11 4 – 19 2.0 + 2.2 + 0.2
Visual Basic 11 2 2 1 16 2.0 + 0.6 + 1.5
Haskell – 2 12 – 14 2.1 + 0.2 + 1.0
Scheme 3 2 2 5 12 2.2 + 0.9 + 1.3
UML – 2 6 3 11 1.9 + 1.7 + 1.0
Prolog 1 – 5 4 10 1.8 + 1.6 + 1.0
SQL – 9 – 1 10 2.0 + 0.0 + 2.0
Assembler 4 5 1 – 10 2.7 + 1.7 + 0.4
picoComputer 7 – – – 7 3.0 + 2.0 + 0.0
Logo 6 1 – – 7 2.0 + 2.0 + 3.0
Mathematica 3 – – 3 6 2.0 + 3.0 + 0.0
XML 3 – 1 2 6 1.9 + 2.3 + 1.3
X 6 – – – 6 2.0 + 2.0 + 3.0
Modula-2 5 – – – 5 2.0 + 2.0 + 1.0
HTML – – – 4 4 1.6 + 1.8 + 0.3
JavaScript – 3 – – 3 2.2 + 1.3 + 0.6
Perl – 2 – – 2 1.0 + 0.0 + 2.0
Delphi 1 – – 1 2 2.0 + 2.0 + 0.0
Fortran 1 – – – 1 2.0 + 2.0 + 0.0
Clojure – 1 – – 1 2.0 + 2.0 + 0.0
Ada – – – 1 1 2.0 + 2.0 + 0.0

 Lec – Lectures, Pra – Practice, Lab – Laboratory

V. Aleksić, M. Ivanović178

gium which were mainly based on procedural style. It can be assumed that constantly
increa-sing interconnection within European continent shall lead to further homogeni-
zation of this distribution. One of the important factors for this projection is an increase
in student’s mobility through various projects, Erasmus Programme, Erasmus+, etc.

Integrated visual representation of the results achieved through analysis is given in
Fig. 2.

5. Final Remarks

Despite a number of studies (Chalk and Fraser, 2006; Gupta, 2004; Ivanović and Bu-
dimac, 2013; Jablonowski, 2007; Mason et al., 2012; Mclver and Conway, 1996) in
the area of identifying, analyzing and determining the usage of “proper” programming
language for the implementation of introduction programming courses, there is a little
systematic evidence to support any practical and particular solution. For this reason,
there was no attempt to create the canonical form of answers to the question of how to
teach the subject.

Our research was designed and directed with a goal to identify and show a variety of
approaches that were caused by the need to support the teachers and their decisions in
their teaching. It is obvious that there were a number of universities that had outdated
curricula with outdated programming languages, so further structural change can be
expected.

It is important to notice that some new programming languages that are especially
useful for educational purposes (rather than for industrial usage) are emerging and are
becoming increasingly popular, such as Python. By using IDE’s and various visual and
narrative tools teaching process is becoming more relaxed. There is a huge amount of
evidence that students have generally positive view on the introduction of supportive
programming tools. The introduction of three or more programming languages in the

Fig. 1. Programming language structure at European universities.

Introductory Programming Subject in European Higher Education 179

introductory programming did not prove effective due to cognitive overload and imme-
diately ineffective learning (Pendergast, 2006).

Fig. 2. Avg. participation of the most popular programming languages by European countries.

V. Aleksić, M. Ivanović180

Choice of programming language is influenced by subjective (personal preference)
and objective (study programme objectives, market conditions and requirements, etc.)
factors (Goosen et al., 2007; Huet et al., 2004). Homogeneity of the programming lan-
guage selection within university/faculty is a consequence of the fact that ultimately the
teacher or several colleagues rarely decide on it independently.

Analysis of study programmes has proven variety in the ways of teaching and types
of used programming paradigm and languages. The results largely coincided with a
number of research studies in the field of programming languages.

It should be stated that the lack of curricula standardization in this area presents
a limitation as the industry cannot rely on teachers’ subjective attitude towards prog-
ramming.

References

Azad, A., Kohun, F. (2009). Considerations for Selecting a Programming Language to Teach Perspective
Teachers. Alice Symposium, Duke University, Durham.

Bordini, R., Braubach, L., Dastani, M., Segrouchni, A., Gomez-Sanz, J., Laite, J., O’Harre, G., Pokahr, A.,
Ricci, A. (2006). A survey of programming languages and platforms for multi-agent systems. Informatica,
30(1).

Böszörmenyi, L. (2005). Teaching: People to People–About People A Plea for the Historic and Human
View. From Computer Literacy to Informatics Fundamentals. Springer, Berlin Heidelberg.

Bradley, J., Case, M., Anita, C. (2002). Programming with Java. Boston, McGraw-Hill.
Butz, C. J., Hua, S., Maguire, R.B. (2004). A web-based intelligent tutoring system for computer program-

ming. IEEE/WIC/ACM International Conference on Web Intelligence (WI’04).
DOI: 10.1109/wi.2004.10104

Chalk, B., Fraser, K. (2006, February). A Survey on the teaching of introductory programming in Higher Edu-
cation. In: Proceedings of the 10th Java & the Internet in the Computing Curriculum Conference (JICC10).
Thomson Publishers, London, United Kingdom, 1–6.

Chen, C. (2004). Comparison of object-oriented and procedural computer languages: case study of C++ pro-
gramming languages. Issues in Information Systems, 4(1).

Comenius, J.A. (1957). Groβe Didaktik. Volk und Wissen, Berlin.
Deitel, P., Deitel, H. (2011). C++ How to program. 8th Edition. Prentice Hall.
Felder, R. M., Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering

education, 78(7), 674–681.
Freund, S., Bruce, K., Hertz, M., Leavens, G., Snyder, L. (2010). Why Undergraduate Should Learn the Prin-

ciples of Programming Languages. ACM SIGPLAN Education Board.
Gomes, A., Mendes, J. (2007). Learning to program – difficulties and solutions. International Conference on

Engineering Education – ICEE, Portugal.
Goosen, L., Mentz, E., Nieuwoudt, H. (2007). Chosing the “best” programming language?! In: Computer Sci-

ence and IT Education Conference CSITEd, Mauritius.
Gupta, D. (2004). What is a good first programming language? Crossroads, 10(4), 7–7.

DOI: 10.1145/1027313.1027320

Huet, I., Pacheco, O.R., Tavares, J., Weir, G. (2004). New challenges in teaching introductory programming
courses: a case study. In: 34th Annual Frontiers in Education, 2004. FIE 2004.
DOI: 10.1109/fie.2004.1408514

Ivanović, M., Budimac, Z. (2013). First programming language – never-ending story. In: AIP Conference
Proceedings 1558. Rhodes, Greece, 353-356.
DOI: 10.1063/1.4825496

Introductory Programming Subject in European Higher Education 181

Jabłonowski, J. (2007). A case study in introductory programming. In: Proceedings of the 2007 International
Conference on Computer Systems and Technologies – CompSysTech’07.
DOI: 10.1145/1330598.1330685

Jenkins, T. (2002, August). On the difficulty of learning to program. In: Proceedings of the 3rd Annual Confer-
ence of the LTSN Centre for Information and Computer Sciences. 4, 53–58.

Kaplan, R.M. (2010). Choosing a first programming language. In: Proceedings of the 2010 ACM Conference
on Information Technology Education – SIGITE’10.
DOI: 10.1145/1867651.1867697

Kolb, A., Kolb, D. (2005). The Kolb Learning Style Inventory. Experience Based Learning Systems, Inc.
Kölling, M. (1999). The problem of teaching object-oriented programming. Journal of Object Oriented Pro-

gramming, 11(8), 8–15.
Mason, R., Cooper, G., de Raadt, M. (2012, January). Trends in introductory programming courses in Austra-

lian universities: languages, environments and pedagogy. In: Proceedings of the Fourteenth Australasian
Computing Education Conference, Vol. 123. Australian Computer Society, Inc., 33–42.

McIver, L., Conway, D. (1996). Seven deadly sins of introductory programming language design. In: Proceed-
ings 1996 International Conference Software Engineering: Education and Practice.
DOI: 10.1109/seep.1996.534015

McKenzie, B. (2009). Introductory programming with ALICE as a gateway to the computing profession.
In: Proceedings of the 23rd Annual Conference for Information Systems Educators (ISECON 2006). 2–5.

Meyerovich, L., Rabkin, A. (2013). Empirical Analysis of Programming Language Adoption. UC Berkeley.
Ng, E., Bereiter, C. (1991). Three levels of goal orientation in learning. Journal of the Learning Sciences,

1(3), 243–271.
DOI: 10.1207/s15327809jls0103&4_1

Parker, K.R., Ottaway, T.A., Chao, J.T. (2006). Criteria for the selection of a programming language for intro-
ductory courses. IJKL, 2(1/2), 119.
DOI: 10.1504/ijkl.2006.009683

Pendergast, M. (2006). Teaching introductory programming to IS students: Java problems and pitfalls. Journal
of Information Technology Education: Research, 5(1), 491–515.

Polya, G. (1957). How to Solve it. Princeton University Press, New York.
Rahmat, M., Shahrani, S., Latih, R., Yatim, N.F.M., Zainal, N.F.A., Ab Rahman, R. (2012). Major problems

in basic programming that influence student performance. Procedia-Social and Behavioral Sciences, 59,
287–296.
DOI: 10.1016/j.sbspro.2012.09.277

Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E. (2002). Learning styles and performance in the introduc-
tory programming sequence. ACM SIGCSE Bulletin, 34(1), 33.
DOI: 10.1145/563517.563352

Ulrich, J., Karvonen, M. (2011). Faculty instructional attitudes, interest, and intention: predictors of Web 2.0
use in online courses. The Internet and Higher Education, 14(4), 207–216.
DOI: 10.1016/j.iheduc.2011.07.001

Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z. (2012). Protus 2.0: ontology-based semantic rec-
ommendation in programming tutoring system. Expert Systems with Applications, 39(15), 12229–12246.
DOI: 10.1016/j.eswa.2012.04.052

Vesin, B., Ivanovic, M., Klasnja-Milicevic, A., Budimac, Z. (2013). Ontology-based architecture with recom-
mendation strategy in java tutoring system. Computer Science and Information Systems Journal, 10(1),
237–261.
DOI: 10.2298/csis111231001v

Wang, P. (2003). Java with Object-Oriented Programming. Pacific Grove, Thomson Brooks/Cole.
Watt, A. (2004). Programming Language Design Concepts. John Wiley.
Weisert, C. (1997). Learning to Program: It Starts with Procedural. Information Disciplines, Chicago.

V. Aleksić, M. Ivanović182

V. Aleksić received the MSc degree in Teaching technics and informatics from Faculty
of Technical Sciences in ���Čačak��, University of Kragujevac, Serbia. He is a Teaching As-
sistant and LMS Moodle Administrator at the Faculty of Technical Sciences in Čačak.
Veljko was a member of several expert teams at the Institute of Educational Quality,
Ministry of Education, Serbia. His research interests include educational technology,
teacher training, game-based learning, and e-learning. He is the author and co-author of
26 journal and conference papers, and four handbooks and textbooks.

M. Ivanović holds the position of Full Professor at Faculty of Sciences, University of
Novi Sad, Serbia since 2002. She is a member of University Council for Informatics.
She is author or co-author of 13 textbooks and of more than 320 research papers on
multiagent systems, e-learning and web-based learning, software engineering educa-
tion, intelligent techniques (CBR, data and web mining), most of which are published
in international journals and conferences. She is/was a member of Program Committees
of more than 160 international conferences and is the Editor-in-Chief of Computer Sci-
ence and Information Systems Journal. She was member and principal investigator of
numerous international projects.

