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Abstract. In this paper, multiple criteria optimization has been investigated. A new decision support
system (DSS) has been developed for interactive solving of multiple criteria optimization problems
(MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are
solved by selecting different weight coefficient values for the criteria and solving single-criterion
optimization problems (SOPs). However, the WS approach does not guarantee either finding evenly
distributed solutions of a Pareto front, or finding Pareto optimal solutions in non-convex regions. In
order to solve the problems, some methods have been proposed. In this paper, an adaptive weighted-
sum (AWS) approach has been used. We suggest presenting the solutions, obtained not only by the
weighted-sum method, but also by the adaptive weighted-sum approach, to a decision maker (DM).
Thus the decision making will be facilitated.

Keywords: multiple criteria optimization, decision support system, interactive optimization,
decision making, Pareto front.

Introduction

When solving the applied tasks in various areas (production, planning, chemistry, educa-
tion, etc.), we face multiple criteria optimization problems. Often the criteria are contra-
dictory. It is impossible to improve the value of a criterion without deterioration of the
values of the other criteria. A lot of methods have been proposed for solving multiple cri-
teria optimization problems (Veldhuizen, 1999; Miettinen, 1999; Ehrgott, 2005; Figueira
et al., 2005). The methods can be grouped into non-interactive (generating) and interac-
tive ones. The methods of the first group find the whole set or a subset of non-dominated
solutions. In the interactive methods, a decision maker is involved not only in decision
making, but also in the solving process (Alves and Climaco, 2006). It is necessary to
develop DSSs, which helps a DM to make a decision.

It is often faced with various multiple criteria optimization problems in education:
score calculation in informatics contests (Skupiene, 2011), evaluation of academic staff
(Salmuni et al., 2006), school scheduling (Fügenschuh and Martin, 2006; Pupeikienė
et al., 2009). Solving these problems a suitable DSS is useful for a DM to solve problems
more efficiently.
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In the paper, we introduce a new decision support system for solving multiple criteria
optimization problems in an interactive way. The system is implemented in Matlab. The
opportunities of optimization and parallel computing toolboxes are used for solving the
optimization problem and implementing a parallel algorithm. The wide used method, the
weighted-sum approach, is implemented in the system. In order to improve the weighted-
sum method, an adaptive weighted-sum approach is implemented, too. The method helps
a DM to find better solutions of the MOPs.

Multiple criteria optimization

The general form of a multiple criteria optimization (minimization) problem (Zionts,
1989) is:

min
X=(x1,...,xn)∈D

F (X) =
[
f1(X), f2(X), . . . , fm(X)

]T
, (1)

where D is a bounded domain in the n-dimensional Euclidean space Rn, X =
(x1, x2, . . . , xn) is a vector of variables, the functions fj(X): Rn → R1 are criteria
and m is the number of criteria.

One of the possible ways of solving the system of problems (1) is to form a single-
criterion problem. Commonly the weighted-sum approach is used (Zadeh, 1963) for this
purpose. This method was proposed almost 50 years ago, but it still remains the basic and
most popular method for solving MOPs. The reasons are that it is effective in most cases
of solving MOPs and is simple to implement. The idea of this method is presented below.
All the criteria multiplied by the positive weight coefficients ωj , j = 1, m, are summed
up and the following single-criteria minimization problem is solved:

min
X=(x1,...,xn)∈D

m∑
j=1

ωjfj(X), (2)

where
∑m

j=1 ωj = 1. The solving process of problem (2) is reiterated by selecting dif-
ferent combinations of the weight coefficient values ωj , j = 1, m. The values can be
selected randomly, by some rule or by a DM. Many solutions are obtained and they are
Pareto points. The most acceptable ones are selected by a DM.

The disadvantage of the WS approach is that it does not guarantee finding evenly
distributed solutions of a Pareto front. Solutions often appear only in some parts of the
Pareto front, while no solutions are obtained in the other parts. The approach does not
find Pareto optimal solutions in non-convex regions. In order to avoid these demerits,
various methods have been proposed. The most popular ones are described here.

The normal boundary intersection (NBI) method uses a scalarization algorithm which
allows a uniform spread of solutions on the Pareto front (Das and Dennis, 1998). Also,
the method is independent of the relative scales of different criteria. The NBI method
discovers solutions in the non-convex region while they cannot be obtained by the WS
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approach. Disadvantages of the NBI method are that sometimes non Pareto-optimal so-
lutions are obtained and this method works properly only with two-criteria problems. If
more than two-criteria problems are solved, some Pareto front regions are not found.

The normal constraint (NC) method is an improvement over the NBI method (Mes-
sac et al., 2003; Messac and Mattson, 2004). Disadvantages of the NC method are that
dominated solutions are found, and a Pareto filter is needed to remove the dominated
solutions.

The adaptive weighted-sum method is similar to the WS approach (Kim and de Weck,
2005). The AWS method searches the points of the Pareto front in the regions where the
Pareto front points have not been discovered by the WS method, by introducing some
additional constraints to these regions. The advantages of this method are that it produces
well-distributed solutions, finds Pareto optimal solutions in non-convex regions. In the
two-criteria case, the Pareto filter is not necessary, because the dominated solutions are
rejected automatically.

The AWS approach consists of some procedures:

1. At first, problem (2) is solved by the WS method.
2. Then, intervals between Pareto points are identified, in which the Pareto points

have not been found and the lengths of the intervals are not so small.
3. The Pareto front points are searched in the identified intervals: problem (2) is

solved by the WS approach with the additional constraints introduced, which re-
strict a feasible region in each identified interval.

2–3 steps are repeated while the Pareto points are evenly distributed on the Pareto
front in feasible regions and non-feasible regions are found.

The above procedures are applied, if a two-criteria optimization problem is solved
(m = 2). In the paper (Kim and de Weck, 2006), the method was adapted for solving a
multiple criteria problem, if m > 2. As examples, the three-criteria cases were used there.
In the case where m = 3, the above-mentioned intervals must be changed to patches and
the length of the interval to the area of patches. If m > 3, the implementation of the

Fig. 1. The solutions obtained by the WS and AWS methods (in case of two-criteria).
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method is very complicated. In the three or more criteria cases, the Pareto filter is re-
quired.

In this paper, a multiple criteria problem of selecting the optimal nutritive value is
investigated (Petkus and Filatovas, 2008, 2009). The DSS is adjusted for solving this
problem. The objective of the problem is to minimize farmers’ expenditure on nutrition by
the optimal selection of feed ingredients in cattle-breeding. It is taken into consideration
that cattle diets consist of different ingredients (e.g., maize, corn, peas, fish oil, etc.) on the
one hand, and each ingredient differs by different nutritive characteristics (e.g., protein,
calcium, natrium, etc.), on the other hand. The cost price as well as violations of the
requirements of the nutritive characteristics values must be minimized. So, the multiple
criteria problem must be solved.

The feed cost price f1, as one of the criteria, is calculated by the formula:

f1(x1, . . . , xn) =
n∑

i=1

xiki. (3)

Here xi is a constituent part of the ith ingredient in feed; ki is the price of the ith ingre-
dient for a weight unit; n is the number of ingredients.

Other criteria are violations of the requirements. They are calculated by the following
formula:

f2(x1, . . . , xn) =

⎧⎨
⎩

0, if Rj
min � Rj � Rj

max,

Rj − Rj
max, if Rj − Rj

max > 0, j = 2, m,

Rj
min − Rj , if Rj

min − Rj > 0,

(4)

where
∑n

i=1 xi = 1; xmin
i � xi � xmax

i , i = 1, n; Rj =
∑n

i=1 xiAij(x1, . . . , xn).
Rj

min and Rj
max are the recommended permissible minimal and maximal amount of the

jth nutritive characteristics in feed; Aij is a nonlinear function that expresses the value of
the jth nutritive characteristics of the ith ingredient; is the number of nutritive character-
istics in feed; xmin

i and xmax
i are the minimal and maximal value of the constituent part

of the ith ingredient. In further experimental investigations, the values n = 50, m = 15
are used.

Criterion (3) is contradictory to the group of criteria (4). With an increase in viola-
tions of the permissible amount of nutritive characteristics, the price of feed is falling.
Furthermore, it is necessary to obtain the solution that each violation does not exceed the
requirements, denoted by DM. These requirements can differ from the values Rj

min and
Rj

max.
When the AWS approach is applied, the problem of 15 criteria is aggregated to two-

criteria as follows: f1 is the cost price, f ′
2 =

∑15
j=2 fj , i.e., the sum of violations of the

requirements. The following minimization problem is solved:

min
X=(x1,...,xn)∈D

(
ω1f1(X) + ω2f

′
2(X)

)
, (5)

where ω1 + ω2 = 1.
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Decision Support System

The DM’s involvement is necessary in solving multiple criteria optimization problems
interactively (Huang et al., 2005; Miettinen and Mäkelä, 2006; Klamroth and Miettinen,
2008). Thus, a decision support system must be designed with a graphical user’s interface
that facilitates DM’s work and permits to review the results and to plan the process of
solving. When solving MOPs, the graphical representation plays an important role for
decision making (Vassilev et al., 2006; Blasco et al., 2008; Ginevičius and Podvezko,
2008; Dowhań et al., 2009).

A DSS for solving MOPs is developed in Matlab. The opportunity for solving prob-
lems in a parallel way is implemented in the DSS. A DM can choose the number of
processors for solving the problem according to the complexity of the problem and the
available computational resources.

In this investigation, in order to demonstrate the DSS features, the system has been
adapted to solve a concrete problem – the problem of selecting the optimal nutritive value
(the cost price is one of the criteria (3), the other 14 criteria are violations of permissible
minimal and maximal norms (4)). The aim of the problem is to achieve the solution with
minimal violations of the recommended permissible minimal and maximal amounts of
the nutritive characteristics in feed at a lower price. The DSS has been slightly changed
according to the specificity of the problem.

The graphic interface of DSS is presented in Fig. 2. The top right corner of the window
displays the last obtained or edited solution. Fourteen horizontal bars present deviations
from the norm of values of the corresponding nutritive characteristics, i.e., violations of
the requirements, when the values ωj , j = 2, 15, of the weight coefficients, presented on
the left, are selected. The numerical values of violations are presented on the right. On the
top of fourteen horizontal bars, the value of the cost price f1 (Savikaina) is located. At
the bottom, the sum f ′

2 of violations of the requirements (Pažeidim ↪u suma) is presented.
A block in the middle of the DSS is designed for changing the weight coefficients

ωj , j = 2, 15. A DM can change the values ωj , typing the desirable values into the
textboxes, or using the scroll bars. On the right of the window, the column chart of the
sums of violations and the values of cost prices, obtained in each experiment, are pre-
sented in order to observe the solving process. The bottom of the window presents the
solutions (5 blocks) that have been obtained and memorized up to the moment. The blocks
display only five memorized solutions, nevertheless, it is possible to review and use any
other memorized solution for further editing with the help of buttons Pirmyn and Atgal.
By using the buttons Pasirinkti under each block, a DM can select one of the memorized
solutions for editing. A possibility has been provided to delete any of the memorized so-
lutions that is improper and therefore needless of editing, as far as the DM is concerned.

Moreover, some different users (DMs) can solve the same problem independently.
Their solutions obtained are saved separately and later a comparative analysis can be
made and the best result achieved can be selected.

The general schema of solving the multiple criteria optimization problem using the
DSS is described as follows:
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Fig. 2. Graphic interface of the decision support system.

1. The optimization problem of 15 criteria (cost price and 14 violations of the re-
quirements) is solved by the WS method. A DM starts solving the problem with
the initial data (combinations of coefficient values ωj , j = 1, 15, selected by the
DM). The solving process is continued by reiterating different combinations of co-
efficient values ωj interactively and the optimization problem is aggregated to a
single-criterion optimization problem according to the WS approach. The problem
is solved several times and the DM chooses some acceptable solutions.

2. If the DM fails to obtain acceptable solutions by the WS method, then the two-
criteria problem (5) can be solved by the AWS method. All the solutions obtained
by the AWS method are saved.

3. The DM can select acceptable solutions, obtained by the AWS method. The cost
prices and all 14 violations of the requirements of the solutions are computed. The
graphical view of violations is shown for the DM. If the solution is not acceptable,
the DM can try to improve the solution by selecting other coefficient values ωj .

4. The DM stops the solving process when the preferable solutions are found.

The Matlab function fmincon is used for solving a single-criterion optimization prob-
lem. This function includes some optimization algorithms: Trust-Region-Reflective Op-
timization (Coleman and Li 1994, 1996), Active-Set Optimization (Han 1977; Powell
1978; Gill 1981), Interior-Point Optimization (Byrd et al., 1999; Waltz, 2006), SQP Op-
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Fig. 3. Solutions obtained by the WS method with various values s.

timization (Nocedal and Wright, 2006). The function fmincon selects the most suitable
method or a combination of methods for solving a problem. When solving the problem,
the function fmincon finds a minimizer X of the function starting at X0. Starting from
different points X0, different results can be obtained.

Experimental Investigations

The goal of experimental investigations is to show the necessity to apply the AWS method
to distribute the solutions on the Pareto front evenly in feasible regions. As mentioned
before, implementation of the AWS method is very complicated in the case of more than
3 criteria, so two-criteria optimization problem (5) is solved in this investigation. The
first criterion f1 is the cost price; the second criterion f ′

2 is the sum of violations of the
requirements. The values of criteria are normalized in the interval [0, 1].

At first, we investigate the distribution of solutions on the Pareto front when solving
problem (5) by the WS method and the values of X0 are fixed. The values of the weight
coefficient ω1 are selected from 0 to 1 at different steps s, and the values of the weight co-
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Fig. 4. Solutions obtained by the WS and AWS methods with various values s.

efficient ω2 are calculated by formula ω2 = 1 − ω1. Three different steps s = 10, 50, 100
are selected and the obtained solutions are presented in Fig. 3. We see that the solution
points of the Pareto front are not distributed evenly. With an increase of the step value
s the number of solutions increases too, but some solutions are coincident and they are
crowded together in some groups. No solutions are obtained in some parts of the Pareto
front.

In the second investigation, we compare distribution of solutions on the Pareto front
obtained by the WS and AWS methods. As mentioned before, the AWS method uses the
results obtained by the WS method. The AWS method finds the solutions in those parts
of the Pareto front where the WS method was unable to find them. The solutions obtained
in the first investigation (Fig. 3) were used in the AWS method. The obtained results are
presented in Fig. 4. We see that the solutions by the AWS method fill in the parts of
the Pareto front which were not filled in by the WS method. However, some parts are
not filled in because no feasible points were found here. It depends on the specificity of
problem (5). Moreover, the experimental results show that a small step value s is enough
for the AWS method to obtain noncoincident solution points and even distribution of the
Pareto front. So, in further experiments, the step value s = 10 is used.
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Fig. 5. Solutions obtained by the AWS method with various values X0.

In the next investigation, we analyze the dependences of distributions of the obtained
solutions on different starting points X0. Many sets of the starting points X0 are used
in the experiments, but only four most distinguished results are presented in Fig. 5. We
see that distributions of the points on the Pareto front differ slightly, but not essentially.
According to the experimental results, most of the solutions are obtained in one part of
the Pareto front: f1 ∈ (0.05, 0.55) and f ′

2 ∈ (0.004, 0.23). The values of the criterion
f1 vary in a much wider interval than the values of the criterion f ′

2. Thus, with a slight
decrease of the sum of violations (f ′

2), the cost price (f1) increases significantly. The
solutions are slightly dependent on X0, but selection of proper X0 is not the essential
task in solving problem (5).

Conclusions

In the paper, a new decision support system is introduced and investigated. Not only the
weighted-sum approach, but also the adaptive weighted-sum method is implemented in
this system. The DSS is developed with a view to facilitate decision making. It is able to
solve large-scale problems, because distributed computing is implemented. The experi-
mental investigations show that even a large set of weight coefficients does not guarantee
finding evenly distributed solutions of the Pareto front when the problem is solved by
the WS method, because many solution points are coincident or close to each other. The
AWS method finds the solution points distributed on the Pareto front evenly. A DM can
use the obtained solutions in order to find the preferable solution. Moreover, the solutions
obtained by the AWS method slightly depend on the starting point for optimization, so
its selection is not a primary task in solving MOPs.

In this investigation, the DSS has been adapted to solve a problem of selecting the
optimal nutritive value. However, the DSS can be easily modified for solving other similar
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multiple criteria optimization problems, for example, school scheduling problem. There
are no schedules that satisfy all restrictions and personal preferences. So, the DSS can
help to compare some alternative schedules interactively – violations of the restrictions
should be visualized. In this case, it would be easier to a DM to choose the preferable
solution.
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Sprendim ↪u paramos sistema daugiakriteriniams optimizavimo
uždaviniams

Ernestas FILATOVAS, Olga KURASOVA

Šiame straipsnyje nagrinėjama nauja sprendim ↪u paramos sistema, skirta daugiakriteriniams
optimizavimo uždaviniams spr ↪esti interaktyviai. Sistemoje realizuotas svorinės sumos metodas,
kuriuo daugiakriteriniai optimizavimo uždaviniai spendžiami parenkant skirtingas svori ↪u kombi-
nacijas ir taip suvedant uždavin↪i ↪i vienakriterin↪i. Tačiau svorinės sumos metodas neužtikrina toly-
gaus sprendini ↪u pasiskirstymo ant Pareto paviršiaus ir neranda sprendini ↪u tose vietose, kuriose tik-
slo funkcija yra neiškyli. Šiems trukumams pašalinti yra siūlomi ↪ivairūs metodai. Vienas iš j ↪u, adap-
tyvus svorinės sumos metodas, yra realizuotas sukurtoje sprendim ↪u paramos sistemoje ir analizuo-
jamas šiame darbe. Siekiant palengvinti sprendim ↪u priėmim ↪a sprendžiant daugiakriterinius opti-
mizavimo uždavinius, siūloma sprendim ↪u priėmėjui pateikti rezultatus, gautus uždavin↪i sprendžiant
ne tik svorinės sumos metodu, bet ir adaptyviu svorinės sumos metodu. Sprendim ↪u priėmėjas iš
gaut ↪u sprendini ↪u gali pasirinkti jam priimtiniausius. Siūloma sprendim ↪u priėmimo sistema gali
būti adaptuota ↪ivairi ↪u daugiakriterini ↪u optimizavimo uždavini ↪u sprendimui, pavyzdžiui, mokyklos
tvarkarašči ↪u sudarymui. Sistema, kurioje būt ↪u vizualizuoti apribojim ↪u pažeidimai, padėt ↪u palyginti
alternatyvius tvarkaraščius, kas palengvint ↪u sprendim ↪u priėmim ↪a.


