
Informatics in Education, 2023, Vol. 22, No. 3, 525–554
© 2023 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2023.20

525

Understanding Loops: What are the Misconceptions
of Lower-secondary Pupils?

Jiří VANÍČEK, Václav DOBIÁŠ, Václav ŠIMANDL
Department of Information Science, Faculty of Education,
University of South Bohemia in České Budějovice
České Budějovice, Czech Republic
e-mail: vanicek@pf.jcu.cz, dobias@pf.jcu.cz, simandl@pf.jcu.cz

Received: June 2022

Abstract. The article describes a study carried out on pupils aged 12–13 with no prior program-
ming experience. The study examined how they learn to use loops with a fixed number of repeti-
tions. Pupils were given a set of programming tasks to solve, without any preparatory or accom-
panying instruction or explanation, in a block-based visual programming environment. Pupils’
programs were analyzed to identify possible misconceptions and factors influencing them. Four
misconceptions involving comprehension of the loop concept and repeat command were detected.
Some of these misconceptions were found to have an impact on a pupil’s need to ask the computer
to check the correctness of his/her program. Some of the changes made to tasks had an impact on
the frequency of these misconceptions and could be the factors influencing them. Teachers and
course book writers will be able to use the results of our research to create an appropriate cur-
riculum. This will enable pupils to acquire and subsequently deal with misconceptions that could
prevent the correct understanding of created concepts.

Keywords: misconception, learning, programming, secondary school, loop, repeat, Bebras chal-
lenge, blockly.

1. Introduction

In this article, we leave aside programming as the professional training of an expert
and instead consider it – in accordance with Gander (Gander, 2014, p. 7) – as a part of
general education. As well as providing an opportunity to explore the world from an-
other point of view, we can see programming as an environment or a microworld, which
develops an individual’s potential and mental ability, allowing them to acquire new
skills (Scherer et al., 2019; Liao, 2000) and understand new concepts and the relations
between them. This specification is the basis for an educational aim, which should be
strived for. It is also a ground for a choice of suitable educational content, environment,
motivation, and methods.

J. Vaníček, V. Dobiáš, V. Šimandl526

Xia (2017) defines teaching programming as supporting students to understand the
concepts of programming via hands-on experience, and learning as the activity of ob-
taining useful programming knowledge and skills by studying.

Programming is more than just coding. It exposes students to computational thinking
which involves problem-solving that uses computer science concepts, such as abstrac-
tion and decomposition. Even for non-computing majors, computational thinking is ap-
plicable and useful in daily life (Lye and Koh, 2014). There is evidence of correlations
between computational thinking and spatial ability, reasoning ability, and problem-solv-
ing ability (Roman-Gonzalez et al., 2017).

However, there is a need for more effective learning environments and learning
methods to teach computational thinking (Dagienė and Futschek, 2019).

According to Papert (1980, p. 122), learners can become the active, constructing
architects of their own learning. As Ackermann (2010, p. 2) suggests, it is worth offering
opportunities for children to engage in hands-on explorations that fuel the constructive
process. In line with Bers (2017) and Bers et al. (2019), these views support the idea of
programming as a training playground where children construct their knowledge. The
question is how to design this playground in the best and most effective way.

2. Background

2.1. Concepts in Learning Programming

One of the key conditions for acquiring skills is to understand the concepts. The pro-
cess of active learning of these concepts is described in the theory of generic mental
models (Hejný, 1990, p. 58; Hejný, 2012, p. 44) which works with the mechanism
of cognitive process. According to this theory, the process of constructing a piece of
knowledge is based on the construction of isolated models, resulting in the creation
of universal ‘generic models’ (Hejný, 2012, p. 44). With enough time and the oppor-
tunity to experience a sufficient number of isolated models in different situations, one
is able to build a generic model which should work in all known situations (Hejný,
1990, p. 59).

Basic programming concepts that a beginner encounters are a script (a program as
a sequence of commands), a loop (with a known number of repetitions), a condition
(within a while loop), branching (if-then), a subroutine, an event (as a starting point for
parallel threads), a variable, and an object (Vaníček, 2019, p. 366). Certain concepts
require prior knowledge of other concepts, e.g., the while loop is determined by the
knowledge of the loop, which is again determined by an understanding of the program as
a sequence of commands. Consequently, the acquisition of such concepts depends on an
individual’s ability to sufficiently comprehend those prior concepts and create a suitable
scheme of these concepts and relations between them.

Other studies deal with the issue of mental models in programming. The more com-
plete and veridical one’s mental model, the more useful in supporting sophisticated pro-
gramming it will be (Cañas et al., 1994). As claimed by Ma (2007), students with viable

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 527

mental models of basic programming concepts perform better in programming tasks
than those with nonviable mental models. According to Kesselbacher and Bollin (2019),
students who are less successful in solving tasks execute the program more often, as
novice programmers have no consistent understanding of basic programming concepts.
Meanwhile, students who are more successful in solving tasks execute the program less
often. Those students do not rely on program execution to understand their program
(Kesselbacher and Bollin, 2019).

2.2. Adaptation of New Knowledge

Piaget describes ways of acquiring mental schemes. These are created by an individual
from constituent findings during exploration of the surrounding world, and they explain
how things work (Piaget, 1930, quoted by Hartl and Hartlová, 2010). If the existing
ways of thinking and schemes are adequate in a confrontation with stimuli from an en-
vironment, the person will be in a state of balance (equilibrium). However, if the person
encounters information which does not fit the existing schemes, a cognitive imbalance
will be created. The person will attempt to restore the balance using assimilation, i.e.,
incorporating new information into the existing schemes. If the new experience does not
fit the person´s existing scheme, then the scheme will be altered in a way that incorpo-
rates the new information. The process of modification of the scheme is called accom-
modation (Sternberg, 1999; Nolen-Hoeksema et al., 2009; Piaget and Inhelder, 1997).
The concept of accommodation and assimilation is widely used (Hanfstingl et al., 2021;
Trigueros, 2019; Dubinsky, 2002) and we will be referring to it in the following section
about overcoming misconceptions.

2.3. Misconceptions

Before being taught concepts, pupils have their own conceptions of some phenomena
that concepts explain. However, these conceptions are different from the currently ac-
cepted scientific concepts (Smith III et al., 1994). In this article, these will be called
misconceptions. Misconceptions arise from pupils’ prior learning, either in a classroom
or from their interaction with the physical and social world (Smith III et al., 1994). Their
origin may also be influenced by the way of teaching (Ozgur and Pelitoglu, 2008). From
a constructivist point of view, a misconception is not a mistake, but a logical construc-
tion based on a consistent but nonstandard theory held by the pupil (Ben-Ari, 2001).
Persistent misconceptions can be seen as a novice’s effort to extend their existing useful
conceptions to instructional contexts, where they turn out to be inadequate (Smith III
et al., 1994). As Swidan et al. (2018) claim, holding a misconception is a step towards
holding the correct and complete concept.

Constructivist-oriented mathematics teaching methods place a heavy focus on
working with mistakes that signify a misconception. In the Czech environment, this is
mostly so-called didactic constructivism (Hejný and Kuřina, 2001). Hejný recommends

J. Vaníček, V. Dobiáš, V. Šimandl528

putting the main focus on the reasons for pupils’ mistakes (Hejný, 2004). If a mistake is
made by a pupil, he/she should be given a different task. The same way of solving that
task would lead to an easily recognizable mistake. The pupil should then be allowed to
detect the mistake in the original solution. A teacher can thus lead the pupil to a con-
flict between his/her misconception and the concept (Molnár et al., 2008). The teacher
attempts to create a cognitive imbalance for the pupil, resulting in accommodation of
new knowledge.

2.4. Misconceptions in Programming

According to Ben-Ari (2001), programming is different from other fields as the conse-
quences of misconceptions are exposed immediately, unlike homework feedback which
can take up to a week. Sorva (2012) claims that a misconception in programming is
usually not universally useless. It may be viable for a particular purpose, but non-viable
in general. People may be entirely satisfied with their misconceived notions, even for a
considerable amount of time (Sorva, 2012). However, incorrect and incomplete under-
standing of programming concepts results in unproductive programming behaviour and
dysfunctional programs (Sorva, 2013).

A different view is introduced by Papert (1980). According to him, mistakes benefit
pupils because they lead them to study what happened, understand what went wrong,
and, through understanding, fix them. He sees mistakes as an intrinsic part of the learn-
ing process (Papert, 1980). If a misconception is understood as a pupil´s conception
that produces a systematic pattern of mistakes (Smith III et al., 1994), misconceptions
and overcoming them can be viewed as a means to obtain a deeper understanding of the
topic. Identifying and addressing pupils’ misconceptions is a key part of a computer sci-
ence teacher’s competence (Qian and Lehman, 2017).

Many studies have dealt with the issue of misconceptions acquired while learn-
ing programming. In his research, Sorva (2012, p. 359) states more than 160 types of
misconceptions in programming, dividing them into several groups (e.g., variables, as-
signment and expression evaluation; subprogram invocations and parameter passing).
However, a number of researchers interpret the term misconception in a broader sense
to include syntactic mistakes (Brown and Altadmri, 2014) or careless errors (Sekiya and
Yamaguchi, 2013).

We accept the view of Qian and Lehman (2017) who perceive misconceptions more
narrowly as errors in conceptual understanding. More precisely, misconceptions are ac-
tually perceived as sources of mistakes as they cause some wrong or incorrect actions
that lead to mistakes. As Qian and Lehman (2017) argue, programming difficulties en-
countered by students are not always neatly identifiable, and misconceptions may con-
tribute to other kinds of difficulties or mistakes that students have to deal with. Other
mistakes which can be observed in programming do not arise from a misconception.
Some might be caused by insufficient computational thinking (failure to complete tasks
involving algorithmization, decomposition, finding repeating patterns, optimalisation or
generalisation), while others might be connected to programming skills.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 529

The occurrence of misconceptions is influenced by the environment in which stu-
dents are taught programming (Mladenović et al., 2018; Weintrop and Wilensky, 2015).
According to Mladenović et al. (2018), students’ misconceptions about loops are min-
imized when using a block-based programming language (Scratch), rather than text-
based programming languages (Logo and Python). With more complex tasks, such as
using nested loops, the differences become more apparent (Mladenović et al., 2018). On
the contrary, Grover and Basu (2017) claim that although it is syntactically easier to put
together programs in block-based environments, conceptual difficulties still persist in
understanding and using fundamental building blocks of programs such as variables and
loops. For learners to understand the concepts which they should use, additional effort
and pedagogical strategies are needed (Grover and Basu, 2017).

Certain studies examining misconceptions in programming deal with the frequency
of occurrence of observed phenomena (e.g., Sanders and Thomas, 2007). According
to Ben-Ari (2001), cataloguing and analysing misconceptions will not be sufficient
to improve students’ understanding. Instead, research must be undertaken to identify
the mental models that cause these specific programming misconceptions, and guide-
lines must be developed so that teachers can detect and correct the problems (Ben-Ari,
2001).

3. Motivation and Research Aim

As mentioned above, several studies have already searched for misconceptions in
programming and cataloged them. This motivated us to investigate how and to what
extent the occurrence of misconceptions in pupils’ solutions are influenced by cur-
ricula consisting of tasks which lead pupils to develop their concepts. This issue
is significant as inappropriately chosen tasks may cause misconceptions which are
then difficult to eliminate. Another issue was whether misconceptions still occur in
block-based programming when they are minimalized according to Mladenović et al.
(2018) and which ones they are.

Hence, we conducted the research to discover which misconceptions occur in begin-
ners’ minds while learning one of the first of the more complicated concepts they en-
counter in programming, i.e., the concept of loop with a known number of repetitions.
An additional aim of the research was to discover the factors which influence these
misconceptions. Regarding the stated research aim, the following research questions
were formulated:

RQ1: ● Which misconceptions occur in beginners’ minds during their introduction
to the concept of loop with a fixed number of repetitions?
RQ2: ● How do pupils cope with misconceptions that prevent them from success-
fully completing a task?
RQ3: ● How does the presence of misconception influence how difficultly a pupil
finds solution of a particular task?
RQ4: ● Which factors concerning the used tasks decrease or increase the existence
of misconceptions identified within RQ1?

J. Vaníček, V. Dobiáš, V. Šimandl530

4. Educational Background

The aim was to study the misconceptions that arise when pupils are solving program-
ming tasks which require the use of loops. In this research, these tasks are supposed to
be solved by pupils individually and autonomously, without preliminary instruction or
accompanying guidance. To support pupils in the learning of concepts, we wanted to
create an environment and curricula that would lead pupils through situations in which a
misconception of a given concept could arise. We supposed that the generic model of the
concept of loop will be formed gradually. We also supposed that pupils would need to
overcome (sometimes viable) misconceptions before the correct use of loops is grasped
in all its facets.

We chose the concept of loop with a fixed number of repetitions (the repeat com-
mand) because it is one of easiest concepts for programming beginners to understand.
In lower-secondary programming curricula (Kalaš and Miková, 2020; Vaníček et al.,
2020), the concept of loop ranks just after the concept of sequence of commands, and
before procedures, conditions, events, objects, branching, parameters, and variables.

The command “repeat n times” was chosen as a representative of loops. We preferred
this repeat loop to a similar for loop, which uses a variable to count iterations, since be-
ginners might be unable to understand the concept of variable – and this could influence
the research results.

4.1. Test Environment

We developed a software environment where interactive situational programming
tasks can be created. A pupil solves a problem in it by assembling a program from
blocks and is given the possibility of testing and debugging his/her program. By col-
lecting data of their program code, researchers are also provided with feedback as
to how respondents solved the tasks. We chose a block-based environment to avoid
syntax/typo errors that would increase the amount of time needed to correct mistakes
caused by misconceptions.

The created environment was implemented as a module in the Bobřík informatiky
contest (2022), the Czech edition of Bebras Challenge (Dagienė, 2008) – see Fig. 1.
There were several reasons for doing this:

The possibility to use the online environment of this contest and to prepare a set ●
of tasks as a test.
Motivation of pupil respondents because they are familiar with this contest. ●
Ethical reasons as Bebras Challenge covers all GDPR issues, e.g., it does not col- ●
lect any personal data.

Our module is based on the Blockly environment as it coincided with the layout
of the Bebras test, the use of commands in Blockly having the same philosophy as in
Scratch and every launch of pupil’s program producing data about it.

In our implementation, only a limited set of programming commands are available.
This prevents pupils from searching the menu and looking for a tool that would simply

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 531

solve the problem rather than having to think about it – as we can see when pupils solve
problems in Scratch (Vaníček, 2019, p. 362).

Pupils create and run their programs any time they want. The sources of information
are the instruction blocks, the task texts and the feedback obtained when running their
programs. The feedback comprises a visual check of how the programmed sprite is be-
having, as well as generated notifications as to whether all requirements have been met.
The environment enables us to create sets of consecutive tasks, similar to Hour of Code
(2015) activities. The tasks gradually increase in difficulty with the progressive involve-
ment of more complex situations.

In such a setting, pupils can always use the trial and error method to discover the
correct use of the repeat block (where to place it, how to compose it with other blocks,
whether the number of repetitions is correct or must be changed). Pupils can also get a
general view by analyzing the situation and using computational thinking. While solving
these tasks, pupils create mental models of the given concept by intense activity.

The developed module allowed us to gather programs which pupils created during
their attempts to solve the tasks. This allows us to observe how pupils learn to under-
stand concepts they need to solve the problem and where misconceptions appear.

We developed a test with tasks based on the template of the microworld of Karel the
Robot (according to Pattis, 1981). In this microworld, a programmed sprite:

Moves in a square grid to the next square. ●
Turns in both directions at a right angle. ●
Detects objects on the square where it is standing. ●
Removes an object from the square. ●
Puts an object on the empty square on which it is standing. ●
Is able to detect an obstacle on the next square in the direction it is facing. ●

Fig. 1. Preview of the test environment and the template simulating the microworld
of Karel the Robot used in the Bebras test.

J. Vaníček, V. Dobiáš, V. Šimandl532

A repeat structure was added to the commands controlling the sprite, constituting
a loop with a fixed number of repeats. No other loop commands were available in the
environment.

We chose the “world of Karel the Robot” as it is simple enough to enable pupils to
understand and master the basics of language so that they can quickly move on to more
complicated tasks. As a result, the time required to gain an understanding of the environ-
ment is reduced, enabling pupils to concentrate more intensively on the algorithmic core
of set tasks.

4.2. Task Design

We created a set of 9 tasks designed for pupils to learn programming basics. These
focused on particular programming concepts. The set of tasks involving the use of the
loop concept were specifically designed to meet the educational goal of pupils being
able to:

Distinguish repeating patterns. ●
Decide whether it is worth using a loop. ●
Distinguish the number of repeats. ●
Find a place where to insert a block (before a loop, inside a loop, after a loop). ●
Repeat a group of blocks in one loop. ●

Tasks focusing on the programming structure of loop were complemented by intro-
ductory tasks of building block sequences (e.g., to order blocks one after another, to edit
and reorder blocks). These also fulfilled the requirement of introducing the program-
ming environment and the world of Karel the Robot. Our research was not conducted on
those introductory tasks. It would have been difficult to distinguish misconceptions of
different kinds (e.g., the relation between the order of blocks in a sequence and the order
of execution of these blocks) from other influences such as issues of editing the block
program or a new environment.

We avoided incorporating those tasks that require using nested loops as they are
significantly more difficult. Moreover, introducing nested loops in the early stages of
learning programming would not allow respondents to gain enough experience with the
simple loop.

From the concept point of view, individual tasks may be presented in the following
way:

Assembling a program, getting acquainted with the environment.1.
Assembling a program to move a sprite.2.
Assembling a longer program. 3.
Using a one-block loop.4.
Using two blocks in a loop (a task added in the second research phase).5.
Using more blocks in a loop with another block before or after the loop.6.
Using a loop where a robot is given a maximum number of steps.7.
Using a loop with a hidden repeating pattern.8.
Using a loop with a more complicated repeating pattern.9.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 533

Starting with Task 4, the length of a program was limited to a certain number of
blocks. That led respondents to use a repeat block, to gather blocks into the repeat block,
or to choose a suitable path for the sprite. Certain tasks had more than one correct solu-
tion. Task 5 had not been included in the original set of tasks, but it was added in the
second phase of the research.

The increasing difficulty of the programming problems can be seen in the set of
sample solutions to the first 6 tasks (see Fig. 2). These clearly show the aim of gradually
increasing the use of the repeat block as pupils progressed through the tasks. It is also
evident that none of the tasks, including those used to introduce new concepts (task 1 –
sequence, task 4 – loop), are trivial. As a consequence, misconceptions could arise. The
whole test is available in Czech at https://www.ibobr.cz/test/archiv-pred-
spustenim/2021/496 (Bobřík informatiky, 2021).

5. Methodology

To answer the above-stated research questions, we examined the misconceptions of
pupils who were learning the basics of programming and had no prior experience
with programming. Pupils were not given any instructions or taught programming
concepts, and they did not have the concepts described or explained to them. They
were simply assigned a task to solve a problem by assembling a program in the created
environment.

Several approaches can be used to discover how pupils learn programming. In many
cases, an analysis of completed tasks does not reveal how a pupil progressed. This
is therefore supplemented by other techniques, e.g., interviews with pupils, a vide-

Fig. 2. Sample solutions to the first 6 tasks in the set.

J. Vaníček, V. Dobiáš, V. Šimandl534

orecording of their solution, or eye-tracking (Bednarik and Tukiainen, 2004; Busjahn
et al., 2014). However, these methods are time-consuming and only a small number of
respondents can be studied as only pure qualitative data are processed. Another method
is to automatically process all outputs from all respondents during task-solutions.

We chose a mixed method of research. Moreover, we divided our research into two
phases. The original set of tasks was used in the first phase and this set was then adapted
for the second phase. In our opinion, the changes made should have helped pupils to
overcome the misconceptions we had discovered (one task being added, using explana-
tory picture and text to accompany a task). However, the core of most of the tasks re-
mained unchanged. Each respondent participated in only one phase of our research.

In the first phase, we answered RQ1 and RQ2. Respondents involved in this phase
were also used as the control group for RQ4. Respondents taking part in the second
phase were used as the experimental group for RQ4. We used data from both phases to
answer RQ3, as the first phase did not provide enough data for statistical evaluation.

We recorded some pupils’ screens during the data collection. Those video-recordings
were then coded by open coding, according to Corbin and Strauss (2008), in Atlas.ti soft-
ware (Friese, 2012; imandl and Dobiá , 2022). In the qualitative analysis, we focused on
mistakes or unusual behavior of respondents. We also attempted to identify the miscon-
ceptions experienced by individual pupils while working with the loop concept.

Afterwards, we verified the occurrence of the qualitatively found misconceptions
using a quantitative method. For this purpose, our test environment records a program
assembled by the pupil. This happens every time the pupil presses the Run button to re-
quest the program to be run. We gained data that can be analyzed in terms of how many
times the pupil asked for the program to be run, the progress a pupil made with his pro-
gram within a task, and whether that program met all the requirements assigned in the
instructions. Those data were then automatically processed in an MS Excel spreadsheet
for the purpose of identifying the individual misconceptions of particular pupils.

Where outcomes were unclear, the nature of the obtained data allowed us to imple-
ment a detailed process to search for the task solution by a particular respondent. We
ultimately used that for all respondents with a quantitatively determined misconception,
analyzing their progress in assembling programs and judging individually whether the
particular misconception had occurred in those data or not.

5.1. Respondents and the Data Collection

Our respondents were made up of lower-secondary pupils aged 12–13. At this age,
pupils are in the formal operational stage (Piaget, 1970). Unlike older pupils, they are
less likely to have encountered programming in lessons at school or during free-time
activities.

The test was run online at participating schools under the supervision of the pupils’
teachers. In our research, we always worked with whole classes as the data collection
was completed during informatics lessons. Respondents were acquired by approaching
15 schools that regularly participate in the Bebras Challenge. Eight schools met our

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 535

requirement that their under-13 pupils agreed to participate and had not previously en-
countered programming at school. There were 402 respondents in total: 98 respondents
in the first phase, 304 respondents in the second.

The data collection was completed during lessons and pupils were assigned a set of
prepared tasks (see 4.2 for details). The time limit for this test was 40 minutes. Respon-
dents were assigned up to 9 tasks (which they were able to solve within the given time
limit). We obtained 12 video-recordings of pupils’ screens, the average length of each
recording being 35 minutes. Using a module which recorded the running programs, we
obtained a total of 20,895 assembled programs for analysis. This means every task that
was started by a respondent ran 7 times on average.

To adhere to research ethics, we strived to eliminate any negative effects on respon-
dents. Data collection was carried out as a non-competitive online test within the Bebras
Challenge environment. Pupils took the test in their own school during lessons, and in
most cases the researcher was not present. In compliance with the privacy statement, pu-
pils’ personal details were not collected during the test in the Bebras Challenge environ-
ment as, in line with GDPR, children under 16 years of age are only allowed to partici-
pate anonymously. Video-recordings of pupils’ screens captured only the web browser
tab where the test was opened and did not violate pupils’ privacy.

5.2. Data Analysis

Video-recordings of screens of chosen respondents during the solving of tasks and saved
sets of each respondent’s created programs allowed us to watch certain kinds of stories
in which the respondent was discovering the right solution. It was possible to follow his/
her strategies for task solutions from those stories, detect mistakes which he/she made,
and analyze whether the mistakes were caused by a misconception or whether there was
a different reason for them. Other reasons included a careless mistake while reading task
instructions, insufficient familiarity with the environment, or a mistake in space orienta-
tion on a graphic screen (typically left-right turning of the sprite).

An example of such a story is one of the respondents’ solutions to task 6. In the task, a
sprite (a girl) should pick up 3 cans and place them in bins. It cannot crash into a tree
by doing so (Fig. 3). The right solution is to use one loop with more repeating blocks,
with one block before the loop.
One respondent, Vanessa, needed 15 attempts to solve the task. Firstly, she quickly
assembled a loop with the right number of repeats that contained more blocks. She then
dealt with the number and order of the blocks inside the loop for a longer period of
time. She added more blocks inside the loop which forced her to decrease the number of
repeats. Finally, she reached the point where the right sequence of blocks was repeated
twice inside the loop. In summary, the sprite repeated its activities the wrong number of
times (her solution offered an even number of executions but it should have been an odd
number according to the instructions). Vanessa realized this after a few attempts. She
then removed the excess half of blocks in the loop and changed the number of repeats
to the right one.

J. Vaníček, V. Dobiáš, V. Šimandl536

As is apparent from the above-mentioned story, we were able to follow not only the
strategies for solutions and misconceptions in the sets of programs, but also other mis-
takes related to the loop and repeat block concepts. For example, some respondents:

Incorrectly added before the loop or after the loop the same sets of blocks that had ●
already been placed inside the loop, instead of altering the number of repetitions
of the loop (see Fig. 4 on the left).

Fig. 3. The test environment with instructions for task 6 and the right assembled solution.

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”);

Fig. 4. Two programming mistakes not based on a misconception. Additions of the same set
of blocks which was inserted inside the loop, before or behind the loop (on the left). An ex-
ample of repeating the same sequence of blocks inside the loop several times (on the right).

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 537

Needed quite a long period of time to order repeating blocks inside the loop. ●
Spent a lot of time removing excess repetitions of the same sequence of blocks ●
inside the loop (see Fig. 4 on the right).

These mistakes do not have to be caused by a misconception, but by the fact that the
code gets long. Since pupils are still not able to grasp the whole program, they focus
only on one part of it. Another reason for a mistake may be insufficient competences
in searching for repeating patterns. Pupils are not sure at this moment which parts of
the program are repeated, they cannot find such patterns or do not realize the need to
search for them.

5.2.1. Analysis of Data for RQ1

To fully answer RQ1, we examined how to find misconceptions (which we had already
encountered in the analysis of the video or chosen assembled programs) in the data of
all respondents. For this purpose, we programmed functions in an MS Excel spread-
sheet using VBA. Those functions identified misconceptions by individual pupils in the
acquired data. The results obtained were recorded in contingency tables. The indica-
tors – which we determined for every misconception – are stated in their description
in the research results. If a pupil first ran the program manifesting the misconception
at least three times, we logged this as an occurrence of a pupil’s misconception in the
particular task.

See the results section for a presentation of the proportion of pupils who manifested
a misconception in a particular task.

5.2.2. Analysis of Data for RQ2 and RQ3

While searching for answers to RQ2 and RQ3, we used programs assembled during a
task solution and data indicating whether the respondent was able to solve the task.

5.2.3. Analysis of Data for RQ4

To answer RQ4, we searched for factors that can have an impact on misconceptions. We
considered whether the program complexity in the expected task solution, the formula-
tion of task instructions, the order of tasks, or the environment setting could affect the
frequency of certain misconceptions. We then changed some task instructions in such a
way that the potential factor would eliminate the particular misconception in the next re-
search phase. If it was eliminated, we could claim that the factor under consideration was
real. Otherwise, the factor did not influence the misconception. Where there was an in-
crease in the occurrence of the misconception after altering the task, it could be claimed
that we had discovered a factor which supports the occurrence of the misconception.

To be able to determine those factors, our research was conducted in two phases, as
mentioned above. Research on the original task set was marked as phase one. Phase two
was conducted with an altered task set to discover factors that influence misconceptions.
For misconception C, phase two was divided into two subphases with task instructions
changed in each of them.

J. Vaníček, V. Dobiáš, V. Šimandl538

Differences in the frequency of misconceptions between individual research phases
were tested using a chi-squared test. We tested significance on the level α = 0.05 using
Statistica and R software.

5.3. Ensuring Validity

To eliminate threats to validity of research design, we chose a mixed form of research. In
the first research phase, we recorded a total of 15 pupils’ screens. These recordings cap-
tured pupils’ approaches to assigned tasks. A qualitative analysis of the video-recordings
led us to identify individual misconceptions.

During the course of the analysis, the authors frequently discussed ways to automa-
tize searching for occurrences of these misconceptions within the data. Several methods
were created for that purpose. These methods discovered occurrences of misconceptions
with varying reliability. To increase the validity of the research, we individually checked
the set of automatically discovered occurrences of pupils’ misconceptions. This signifi-
cantly increased the validity of the research. We are convinced that all of the cases des-
ignated as having occurrences of particular misconceptions are valid, and do not involve
mistakes caused by other factors.

6. Results

In the following chapters, we demonstrate the relative frequency of the occurrence of
the discovered misconceptions in programs assembled by pupils. We concentrated on
tasks which were sensitive to a particular misconception, and especially tasks in which
the misconception appeared for the first time. We did not consider initial tasks where the
concept of a loop does not occur, or tasks focusing mostly on finding an algorithm.

6.1. Discovered Misconceptions (RQ1)

We discovered 4 misconceptions related to the loop concept (text in brackets explains
what the misconception consists of):

Misconception N – no blocks in a loop (the pupil does not insert any block into ●
the body of the loop).
Misconception O – one block in a loop (the pupil inserts only one block into the ●
body of a loop).
Misconception C – a constant number of repetitions (the pupil does not change ●
this number).
Misconception S – a series of ● repeat blocks (the pupil generates a chain of loops
one after another).

These misconceptions will be explained in the following text. Their frequency (see Ta-
ble 1) is determined in the first task, where they could appear in the first research phase.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 539

Table 1
Proportion of pupils who manifested a particular misconception

out of the total number of those who began to solve the task

Misconception Proportion of pupils Total number of pupils

N (no blocks in a loop) 9.6% 94
O (one block in a loop) 30% 94
C (a constant number of repetitions) 13% 94
S (a series of repeat blocks) 25% 93

We expected to find more misconceptions, but were unable to detect them. Either
the applied method was insensitive to other misconceptions, or it was unable to distin-
guish between mistakes caused by other misconceptions and other types of mistakes.
An example of one such misconception is pupils not fully understanding how blocks
in a loop are executed. Some pupils may not understand that the execution of the last
block during the first iteration of the loop is immediately followed by the execution of
the first block of the next iteration of the same loop. We were not able to successfully
distinguish mistakes caused by this misconception from other mistakes, e.g., from bad
pattern recognition.

6.1.1. Misconception N (No Blocks in a Loop)

The first three tasks in our task set can be solved without using a loop. Task 4 “Lost car-
go” needs a repeat block for it to be successfully completed. The task is shown in Fig. 5.
Initially, pupils often try to solve the task by using blocks known from previous tasks.
Once he/she discovers this is not possible, the only other option is to use a repeat block.
The pupil does not know the repeat block, therefore he/she experiments with it and
creates concepts according to the way a particular block works. To successfully solve
previous tasks, individual blocks are ordered one after another. Some pupils continue
with the same method in the loop, but in such a situation this is a misconception. To be
able to overcome it, the pupil has to discover the possibility of putting another block into
the repeat block. Misconception N lies in the pupil’s fallacy that: “no other block can
be put into the repeat block”.

The misconception indicator here was running the program three times with an emp-
ty repeat block. Task 4 was the first task to require the repeat block. 9.6% of pupils
manifested misconception N in that task.

6.1.2. Misconception O (One Block in a Loop)

To solve the first task requiring the use of a loop – task 4 “Lost cargo”, exactly one
block needs to be put into a repeat block. Some pupils manifested the following mis-
conception while programming: “it is possible to put only one block into a repeat
block”. With this misconception, it is possible to solve task 4, but impossible to solve
the following tasks, whose successful completion requires more blocks to be put into
the repeat block.

J. Vaníček, V. Dobiáš, V. Šimandl540

The first task where misconception O may occur is task 6 (see Fig. 3). The miscon-
ception indicator here was inserting only one block in the repeat block. Misconception O
in task 6 occurred in 30% of all pupils who were working on that task. More than a third
of these were unable to get rid of misconception O in the following 3 tasks. This proves
how difficult it was for a certain number of pupils to overcome misconception O.

6.1.3. Misconception C (a Constant Number of Repetitions)

A repeat block, which is chosen by a task solver and then inserted into his/her program,
contains a previously adjusted number of repetitions that can be edited. Misconception C
lies in the pupil’s belief that this number of repetitions cannot be changed. Certain
pupils tried to solve tasks with the previously adjusted number of repetitions.

The first task that is sensitive to misconception C is task 4 (see Fig. 5). The miscon-
ception indicator here was the unchanged number of repetitions in a loop as opposed to
the implicit number. In task 4, this misconception occurred in 13% of pupils.

6.1.4. Misconception S (a Series of Repeat Blocks)

This misconception lies in the pupil’s belief that a repetition of a block group is
achieved by using more repeat blocks one after another. Advanced understanding of
the concept of a loop requires the comprehension of how repetitions of a group of com-
mands work. A simple repetition of one block is not enough when solving more complex
tasks such as ordering things or walking around a square. Misconception S arises from
misunderstanding how the loop works; how and in which order commands in the loop
are executed. With this misconception, the pupil adds more repeat blocks at the end of

Fig. 5. Task 4 in which misconceptions N and C appear.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 541

the program instead of using only one repeat block and putting the group of blocks into
the body of the loop (see Fig. 6). This may be caused by the fact that pupils were used
to adding blocks at the end of the program in the previous tasks. This misconception
might be supported by the simplicity of mechanical assembling of repeat blocks one
after another.

The first task in which misconception S might appear is task 6. The misconception
indicator here was the presence of more repeat blocks placed one after another with one
block in the body of the loop. Misconception S occurred in 25% of respondents.

As is apparent from Table 1, misconceptions O and S appeared much more frequently
than the other two misconceptions. We presume that misconceptions O and S are related
to a deeper understanding of the loop concept. This coincides with our findings that they
occurred in tasks in the second half of the test, where tasks are more complex.

6.2. Variations of Coping with Misconceptions (RQ2)

If a pupil manifested a misconception which prevents him/her from successfully solving
the given task, the pupil may react in two different ways 1 :

He/she tries to overcome the misconception and go on to successfully solve the ●
task.
He/she gives up his/her attempts to solve the task. ●

1 In the following text, we will omit strategies involving searching for external help (e.g., a teacher, a school-
mate), or using information sources, since pupils involved in the research worked individually and without
an opportunity to use information sources.

Fig. 6. Occurrences of misconception S. The expected solution is on the left and a solution
influenced by misconception S on the right. The upper scheme shows a simple situation, the

lower scheme shows a more complex situation.

J. Vaníček, V. Dobiáš, V. Šimandl542

The following text examines how pupils cope with the individual misconceptions.
The term “to overcome a misconception” means that when solving a task, a pupil first
manifested the misconception but then went on to solve the task successfully. As is ap-
parent from Table 2, almost all pupils with misconception C and two thirds of pupils
with misconception N were able to overcome those misconceptions. Meanwhile, only
one fifth or one seventh of pupils were able to overcome misconception O and miscon-
ception S and finish the task.

6.3. The Impact of the Occurrence of a Misconception on the Difficulty of Solving a
Particular Task (RQ3)

We were interested in how long it would take a pupil to solve the given task if he/she did
or did not develop a misconception. We chose not to measure time because the amount
of time needed to solve a task could be influenced by differences in the time required to
read instructions or jumping from one task to another. Instead, we counted how many
times a pupil asked the computer to check the correctness of the assembled program. We
divided all pupils who solved the task correctly into 2 groups: pupils with the particular
misconception and pupils without it. We counted the average number of pupils’ pro-
grams in both groups and compared those numbers (see Table 3).

We again focused on the first task where the particular misconception appeared.
The results in Table 3 suggest the occurrence of the misconception lowered the pupils’

Table 2
The proportion of pupils who manifested the particular misconception and solved

the task from the total number of pupils who manifested that misconception

Misconception Proportion of pupils who
overcame the misconception

Total number of pupils who
manifested that misconception

N (no blocks in a loop) 67% 9
O (one block in a loop) 14% 28
C (a constant number of repetitions) 92% 12
S (a series of repeat blocks) 22% 23

Table 3
Comparison of average numbers of programs assembled by successful

solvers per pupil depending on the presence of the misconception

Misconception Average number of programs
assembled by pupils with the
misconception

Average number of programs
assembled by pupils without the
misconception

N (no blocks in a loop) 13.6 5.9
O (one block in a loop) 10.0 3.9
C (a constant number of repetitions) 9.8 5.3
S (a series of repeat blocks) 15.3 4.6

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 543

ability to solve the given task because it increased the number of checks on assembled
programs. This was confirmed by a nonparametric Mann-Whitney U test2 , accord-
ing to which, differences are statistically significant at the level of α = 0.05 for every
misconception.

6.4. Factors which Influence Misconceptions and their Impact on the Frequency
of Occurrence of Misconceptions (RQ4)

We were seeking factors which influence misconceptions and are related to particular
tasks. The occurrence of misconceptions may be influenced by the nature of the task, the
formulation of its instructions, and also by tasks which have already been completed by
the pupil. We tested whether the frequency of misconceptions can be changed by altering
certain task instructions or even by adding another task.

In our interpretation, if the frequency of occurrence decreases, the particular factor
reduces the misconception. If the frequency increases, the particular factor strengthens
the misconception. Where no statistical change occurs, the particular task alteration does
not behave as a factor. Table 4 shows the probability (p-values) that there is no difference
between data from the first and second phase.

Contrary to the first research phase, we implemented the following changes into the
set of tasks in the second research phase:

 1. Clarification picture: We added a picture showing an example of a loop with 2
inserted blocks to accompany the instructions for task 4 where the loop appears
for the first time (see Fig. 7). The following text complemented the picture: “An
adjusted repeat block may look like this. You can change the number in the blue
square.” The picture could not be taken as a hint for solving the particular prob-
lem. Through that change we aimed at all four misconceptions.

2 According to a Shapiro-Wilk test, the data were not normally distributed, so a nonparametric Mann-Whitney
U test was used.

Table 4
This shows how implemented changes influenced the occurrence of particular misconcep-
tions in the form of p-values. D indicates a decrease in the frequency of misconceptions.

I indicates an increase in the frequency of misconceptions in a particular case. Statistically
significant differences are marked with an asterisk (α = 0.05)

N
(no blocks in a
loop)

O
(one block in a
loop)

C
(a constant number
of repetitions)

S
(a series of repeat
blocks)

Additional task —
D 0.00001*

— —

Clarification picture D 0.32 phase 2a:
I 0.034*;
phase 2b:
I 0.0044*

D 0.04*

Change of implicit number — — —

J. Vaníček, V. Dobiáš, V. Šimandl544

 2. Additional task: A large decrease in the number of successful solutions in task 6
compared to task 4 signaled a huge cognitive jump between those tasks. This was
caused by the fact that the new concept occurred in a more complex situation (five
blocks inside a loop, another block before the loop). Having detected it, we added
a new fifth task in the second research phase (see Fig. 8). Solving task 5 requires
pupils to place two blocks into the loop and no more blocks either before or after
the loop. Through that change, we aimed at misconceptions O and S.

Fig. 7. Clarification picture accompanying task 4 instructions in the second research phase.

Fig. 8. The newly inserted task 5 in the second phase of the research. In the menu on the
left, there is a repeat block with an implicit number of repetitions different from 1.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 545

 3. Change of implicit number of repetitions in the repeat block: While solving
tasks, pupils were assembling a program from blocks which they had selected
from the available options. In the first research phase, the repeat block had the
implicit number of repetitions in all tasks set at 1 (see Fig. 5). We changed that
number in certain tasks in the second research phase. Through that change we
aimed at misconception C.

6.4.1. Factors which Have an Impact on Misconception N (No Blocks in a Loop)

A total of 9.6% of pupils manifested misconception N in the first research phase. That
number decreased to 6.5% of pupils in the second research phase. The difference be-
tween the numbers of pupils who manifested misconception N in the first and second
research phase is not statistically significant (p-value = 0.32). Inserting a clarification
picture is not a factor which would significantly decrease the occurrence of miscon-
ception N.

6.4.2. Factors which Have an Impact on Misconception O (One Block in a Loop)

We examined whether the implemented alterations to task instructions influence the
frequency of occurrence of misconception O. Pupils encountered this misconception
for the first time in task 6 in the first research phase. As there was a significant cogni-
tive jump between tasks 4 and 6, it was much more difficult for pupils to identify and
overcome the misconception. This led to a longer duration of misconception O. The
alterations to task instructions in the second research phase, i.e., adding task 5 and a
clarification picture to task 4, resulted in pupils having already encountered misconcep-
tion O in task 5.

Our alterations led to a decrease in frequency of the occurrence of misconception O –
from 30% to 11% of pupils. This difference is statistically significant (p-value = 0.00001)
and demonstrates that inserting an appropriate task before the first task in which the mis-
conception occurred and adding a clarification picture to instructions are factors which
statistically decrease misconception O. Those measures helped pupils to understand that
their concept of repeat block with only one inserted block would not lead to the success-
ful solution. Due to this, accommodation was possible, i.e., the pupil’s concept changed
from “a repeat block can have only one inserted block” to “a repeat block can have as
many inserted blocks as necessary”.

In the second research phase, pupils were able to overcome misconception O during
the inserted task 5. This led to the achievement in task 6 increasing from 45% of pupils
in the first research phase to 74% of pupils in the second research phase.

6.4.3. Factors which Have an Impact on Misconception C
(a Constant Number of Repetitions)

For misconception C, we conducted the second research phase in two subphases: 2a and
2b. We decided to influence the frequency of occurrence of misconception C by altering
the implicitly given number of repetitions in the repeat block. In the first task that was
sensitive to misconception C (task 4), we changed the implicit number of repetitions in

J. Vaníček, V. Dobiáš, V. Šimandl546

the repeat block from a value of 1 to a value of 3 in the subphase 2a. The frequency of
the occurrence of misconception C could also be affected by the clarification picture of
the assembled repeat block in the instructions for task 4 (see Fig. 7). In this picture, we
used a different number than 1 for the number of repetitions in the repeat block. Task 4
required the sprite to move 6 steps. The settings in this subphase allowed respondents
to use two consecutive repeat blocks with 3 repetitions, while still remaining within
the limit of the maximum number of used blocks. Pupils were able to use the implicit
number of repetitions to solve the task correctly, and thus were not forced to overcome
misconception C in the task.

Those changes led to an increase in frequency of the occurrence of the misconception
from 13% to 24% of pupils in the subphase 2a. This difference is statistically significant
(p-value = 0.034). However, we discovered that 18% of pupils solved the task without
changing the implicit number of repetitions, i.e., 22 (73%) of the 30 pupils who manifest-
ed misconception C managed to find a solution to the task without overcoming this mis-
conception. Those pupils had to overcome the misconception in the tasks that followed.

We decided to conduct another subphase, 2b, again changing the number of repeti-
tions in the repeat block from 3 to 4 (which is not a divider of 6) in that task. The settings
allowed pupils to add two “one step” blocks behind the loop with number 4, while still
remaining within the limit of the maximum number of used blocks in the task. In addi-
tion, we added the following sentence to the instructions for task 4: “You can change the
number in the blue block”, which could help pupils to overcome that misconception.

In subphase 2b, misconception C occurred in 28% of pupils, indicating another in-
crease in the occurrence of misconception C. These differences between phase 1 and
subphase 2b are statistically significant (p-value = 0.0044), while the differences be-
tween subphases 2a and 2b are not statistically significant (p-value = 0.45). However,
we discovered that 23% of pupils solved the task without changing the implicit number
of repetitions, i.e., 38 (81%) of the 47 pupils who manifested misconception C managed
to find a solution to the task without overcoming this misconception. These results are
shown in Table 5.

The results of the second research phase demonstrate that pupils primarily attempt
to find the solution without rewriting their concept of work with the repeat block. Only
a task which cannot be solved without rewriting the wrong concept can lead them to ac-
commodate the new concept of work with the loop, i.e., task 4 in the first research phase
and task 5 in the second research phase.

Table 5
Results of misconception C in task 4, where the sprite has to move 6 steps using a loop

Research
phase

Implicit number
of repetitions in
the repeat block

Proportion of pupils –
misconception C
occurred

Proportion of pupils – cor-
rect solution without chang-
ing the implicit number

Total number of
pupils who began
to solve the task

1 1 13% 0% 94
2a 3 24% 18% 124
2b 4 28% 23% 167

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 547

The results also show that setting a different implicit number of repetitions than 1 in
the repeat block strengthens misconception C. We assume that some pupils accept such
a number as the author’s intention in the task – and they therefore try to comply with it
which strengthens the misconception.

6.4.4. Factors which Have an Impact on Misconception S
(a Series of Repeat Blocks)

We were looking for factors that would influence misconception S (the repetition of
more blocks is achieved by using more loops one after another) in task 6. The miscon-
ception occurred in 24% of pupils in the first research phase and in 17% of pupils in
the second research phase. Their comparison showed a statistically significant decrease
in the occurrence of the misconception with the p-value = 0.04. It can be claimed that
the clarification picture and the text demonstrating the example of a loop with more
blocks decreased the occurrence of a chain of loops being wrongly assembled one after
another.

We were also investigating the second possible factor – the addition of task 5 which
simplifies the transition to the loop with more blocks. Misconception S did not occur in
any respondents in the task 5, but it occurred in subsequent task 6. So it seems that task 5
is not sensitive to misconception S and does not cause it.

7. Discussion

In our research, we discovered other misconceptions than those provided by Sorva
(2012, p. 359) in his overview. Sorva examines several misconceptions related to the
loop concept. However, he is primarily concerned with misconceptions related to for
loop variables (e.g., “for loop control variables do not have values inside the loop”)
and evaluating a while loop’s condition (“while loops terminate as soon as the condition
changes to false”). This may be due to Sorva (2012) focusing on the CS1 curriculum,
whereas we targeted lower-secondary pupils. It may also be due to the fact that the re-
peat loop does not contain a variable, thus it is more sensitive to beginners’ misconcep-
tions than the for loop.

In this part, we discuss issues connected with overcoming misconceptions:
Cognitive imbalance leading to accommodation. ●
Preference for assimilation to accommodation. ●
Complexity and interconnection of misconceptions. ●
Opportunities for overcoming misconceptions. ●
Environments supporting overcoming misconceptions. ●

The support of cognitive imbalance leading to accommodation. While task 6 was
successfully solved by less than one half of pupils in the first phase, this proportion
increased to three quarters of pupils in the second phase. As there was no alteration to
task 6, this percentage change was caused by adding task 5 and using a clarification
picture in task 4. Considering the first tasks, which required more than one block to be

J. Vaníček, V. Dobiáš, V. Šimandl548

inserted in a repeat block, one third of pupils manifested misconception O in task 6 in
the first research phase. This proportion decreased to one tenth in task 5 in the second
phase. By inserting task 5, pupils were given a clear indication that this task could not
be solved without placing more blocks into the loop. A cognitive imbalance occurred,
as described by Sternberg (1999), Nolen-Hoeksema et al. (2009), Piaget and Inhelder
(1997). This cognitive imbalance subsequently resulted in pupils accommodating the
concept and overcoming misconception O.

Preference for assimilation to accommodation of new knowledge. The cause of mis-
conceptions might lie in the unsuitable generalization of prior experience. In accordance
with Smith III et al. (1994), we believe that misconceptions usually originate in prior
instruction, as pupils incorrectly generalize prior knowledge to cope with new tasks.
Tasks which should lead to accommodation have to be prepared in such a way that they
cannot be solved without overcoming the pupil’s misconception. If such a possibility
exists, pupils will naturally prefer solving the task without being forced to accommodate
their existing mental schemes. This is documented in the findings of misconception C in
the second research phase.

Considering misconception C, we made it possible to complete task 4 without chang-
ing the implicit number of repetitions in the repeat block. However, it was actually more
difficult to do that than to change the number of repetitions. Nevertheless, most pupils
who manifested this misconception (three quarters in phase 2a, four fifths in phase 2b)
opted for the more difficult alternative. These pupils were unable or unwilling to get rid
of misconception C and discover the easier alternative based on changing the number
of repetitions in the repeat block. These results are in line with Sternberg (1999) and
Nolen-Hoeksema et al. (2009), who claim that individuals prefer assimilation of the
new findings into the existing mental model to accommodation of the old model due to
the new findings.

Complexity and interconnection of misconceptions. As opposed to misconceptions N
and C, pupils overcame misconceptions O and S with relative difficulty. This may be
caused by the fact that misconceptions N and C can be quite easily discovered and re-
moved during program testing. Misconceptions O and S are less specific and more com-
plex as they concern a deeper understanding of how a loop works. Therefore, the pupil
might attribute the failure of the program to other reasons. He/she might then attempt to
eliminate these other reasons and hence does not focus on the misconception itself. This
would explain that misconceptions N and C occurred in the earlier task 4, while miscon-
ceptions O and S occurred in the later task 6 – which is more complex.

Another reason may relate to the interconnection of misconceptions O and S. As
pupils were inclined to assume that they can put only one block into a repeat block
(misconception O), they generated a chain of repeat blocks (misconception S). In their
solutions, each of the repeat blocks contained only one block. It can be assumed that
many of the pupils did not fully overcome misconception O, leading to the formation of
misconception S.

The need for having enough opportunities for overcoming misconceptions. Some
misconceptions seem to be very simple and easily corrected. This might give teachers

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 549

the impression that they do not have to be dealt with in programming education. Howev-
er, their occurrence in a significant number of pupils and their impact on the difficulty of
a task demonstrate the need to bear them in mind. Some teachers might prefer to exclude
these misconceptions when formulating tasks and designing a curriculum. Those teach-
ers may assume that when pupils focus on overcoming these misconceptions, they lose
the time and energy needed to solve real problems that would develop their ability to
program. However, without encountering misconceptions, pupils cannot improve their
mental models of concepts. Moreover, we can easily fail to solve real-world problems
without correctly built generic mental models of concepts. This is in line with Sorva
(2012), who claims that an incomplete understanding of programming concepts results
in unproductive programming behavior.

The need for suitable environments supporting overcoming misconceptions. In Ta-
ble 2, there are high proportions (two thirds and nine tenths) of pupils who overcome
misconceptions N and C. This shows that the majority of pupils who manifested these
misconceptions overcame them in the very same task, leading us to believe that the
wording of the questions and the nature of the environment were appropriately selected.
Consequently, pupils quickly overcame a particular misconception and gained an un-
derstanding of the loop concept more quickly. If the task is more complex and contains
more problematic areas for the pupil, it will significantly decrease the probability of him/
her overcoming the misconception.

Environments like “Hour of Code” might be considered helpful. This allows pupils
to assemble a program from blocks in a graphic environment. Provided tasks are se-
lected appropriately, this environment provides a number of situations where pupils can
develop misconceptions and quickly overcome them. In accordance with the theory of
generic mental models (Hejný, 2012), this enables pupils to create a generic model of a
particular concept more easily.

8. Conclusion

In this study, we researched aspects concerning the creation of concepts for learning pro-
gramming at an age of 12–13. We looked into comprehension of the loop concept in a set
of programming tasks in a block-based environment. We researched pupils who had not
previously learned programming at school. These pupils solved tasks that were assigned
in the form of an online test. Pupils had no preparatory or accompanying instruction or
explanation. We looked for misconceptions that prevent beginners from successfully
solving such tasks.

We were able to detect four misconceptions:
Misconception N – no command is inserted into a ● repeat block.
Misconception O – only one command is possible to insert into a ● repeat block.
Misconception C – the number of repetitions in a loop cannot be changed. ●
Misconception S – the repetition of a number of commands is achieved by using ●
a number of loops one after another.

J. Vaníček, V. Dobiáš, V. Šimandl550

Our results show that misconceptions N and C are easily overcome, while miscon-
ceptions O and S are not.

The presence of a misconception makes it more difficult for a pupil to solve a task.
It also significantly increases the pupil’s need to ask the computer to check the correct-
ness of the assembled program. We discovered factors which influence some of these
misconceptions:

Inserting a picture clarifying programming code of two blocks in a loop reduces 1.
misconceptions O and S.
Setting a different implicit number of repetitions than 1 in a 2. repeat block strength-
ens misconception C.

It appears that an analysis of pupils’ work can reveal their misconceptions and that
programming lessons could be improved by adding:

Tasks in which a teacher would easily detect a pupil’s misconception. ●
Tasks which would be more resilient to the occurrence of misconceptions. ●
Tasks which would enable pupils with misconceptions to accommodate their ●
mental model and thus overcome the misconception.
Tasks focusing on one specific misconception rather than on a combination of ●
them.
Tasks which are impossible to solve without overcoming the misconception ●
which the task is focused on.

One limitation of this study might be that we were not always able to clearly dis-
tinguish between mistakes caused by a misconception and other kinds of mistakes. The
examined occurrences may not be cases of misconceptions on all occasions. There may
be mistakes caused by a pupil not knowing how to write his/her idea in the particular
language. Despite the detailed analysis of a particular program, we were not always
sure of the origin of the mistake on every occasion.

A further limitation could be the specific context the research was carried out in.
Although a teacher was present in the classroom, he/she did not interfere in the pupils’
learning process (he/she did not offer any hints on how to solve the tasks or discuss
pupils’ mistakes with them). Pupils received all information and feedback from the test
environment.

Another limitation could be that data collection was completed online. The research-
ers were not present in the classroom. If a teacher was not thorough and did not follow
our instructions, this may have led to negative occurrences such as cheating, distorting
the results of our research. The absence of a researcher was deliberate as we did not
want to make pupils nervous due to the presence of a stranger in the classroom. We
also wanted to respect the ethical principles of research by protecting the anonymity
of research participants. Since pupils’ achievement in tasks was not to be assessed, we
believe that there were no negative occurrences such as cheating.

A final limitation of the study is the risk that some pupils teach themselves program-
ming out of school. However, we assume that not many pupils in that particular age
group actually do so. This would only have had an impact on the results of RQ2.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 551

In future research, it would be worth focusing on more difficult programming con-
cepts such as conditions, variables, or parameters in functions. Research could concen-
trate on methods which would manage the occurrence of misconceptions by using a
suitable choice of instructions in programming tasks. This could involve deliberately
initiating the occurrence of misconceptions that the pupil would have to overcome.

Acknowledgments

This research was covered from projects TAČR TL03000222 – The development of
Informatics thinking by means of situational algorithmic problems.

References

Ackermann E. (2010). Constructivism(s): Shared roots, crossed paths, multiple legacies. In: Clayson, J.E.,
Kala I. (Eds.), Constructionism 2010: Constructionist Approaches to Creative Learning, Thinking and
Education: Lessons for the 21st Century: Proceedings for Constructionism 2010. Comenius University,
Bratislava.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.6201&rep=rep1&type=pdf

Bednarik, R., Tukiainen, M. (2004). Visual attention tracking during program debugging. In: Proceedings of
the Third Nordic Conference on Human-computer Interaction (NordiCHI ‚04). Association for Computing
Machinery, New York, NY, USA, 331–334. DOI: 10.1145/1028014.1028066

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and
Science Teaching. 20(1), 45–73. https://www.learntechlib.org/primary/p/8505/

Bers, M.U. (2017). Coding as a Playground: Programming and Computational Thinking in the Early Child-
hood Classroom. Routledge, New York.

Bers, M.U., González-González, C., Armas-Torres, B. (2019). Coding as a playground: Promoting positive
learning experiences in childhood classrooms. Computers & Education. 138, 130–145. DOI: 10.1016/j.
compedu.2019.04.013

Bobřík informatiky (2021). Bloky: A set of educational programming tasks. In: Beaver of Informatics. Jiho-
česká univerzita v Českých Budějovicích, České Budějovice, Czechia.
https://www.ibobr.cz/test/archiv-pred-spustenim/2021/496

Bobřík informatiky (Beaver of Informatics) (2022). Jihočeská univerzita v Českých Budějovicích, České
Budějovice, Czechia. https://www.ibobr.cz/english-uk

Brown, N.C.C., Altadmri, A. (2014). Investigating novice programming mistakes: educator beliefs vs.
student data. In: Proceedings of the Tenth annual Conference on International Computing Educa-
tion Research (ICER ‚14). Association for Computing Machinery, New York, NY, USA, 43–50.
DOI: 10.1145/2632320.2632343

Busjahn, T., Schulte, C., Sharif, B., Simon, Begel, A., Hansen, M., Bednarik, R., Orlov, P., Ihantola, P., Sh-
chekotova, G., Antropova, M. (2014). Eye tracking in computing education. In: Proceedings of the Tenth
Annual Conference on International Computing Education Research (ICER ‚14). Association for Compu-
ting Machinery, New York, NY, USA, 3–10. DOI: 10.1145/2632320.2632344

Cañas, J.J., Bajo, M.T., Gonzalvo, P. (1994). Mental models and computer programming. International Jour-
nal of Human-Computer Studies. 40(5), 795–811. DOI: 10.1006/ijhc.1994.1038

Chao, P.-Y. (2016). Exploring students‘ computational practice, design and performance of problem-solving
through a visual programming environment. Computers & Education. 95, 202–215. DOI: 10.1016/j.
compedu.2016.01.010

Corbin, J.M., Strauss, A.L. (2008). Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory. 3rd ed. SAGE Publications, Los Angeles.

Dagienė, V. (2008). The BEBRAS contest on informatics and computer literacy – students’ drive to science
education. In: Joint Open and Working IFIP Conference. ICT and Learning for The Next Generation.

J. Vaníček, V. Dobiáš, V. Šimandl552

Pp. 214–223.
https://www.bebras.org/sites/default/files/documents/publications/DagieneV-2008.pdf

Dagienė, V., Futschek, G. (2019). On the way to constructionist learning of computational thinking in regular
school setting. Constructivist Foundation. 14(3), 231–233.
https://constructivist.info/14/3/231

Dubinsky, E. (2002). Reflective abstraction in advanced mathematical thinking. In: Tall, D. (Ed.), Advanced
Mathematical Thinking. Mathematics Education Library. Springer, Dordrecht, 95–126. DOI: 10.1007/0-
306-47203-1_7

Friese, S. (2012). Qualitative Data Analysis with ATLAS.ti. SAGE Publications, London.
Gander, W. (2014). Informatics and general education. In: Gülbahar, Y., Karataş, E. (Eds.), Informatics in

Schools. Teaching and Learning Perspectives. ISSEP 2014. Lecture Notes in Computer Science, vol 8730.
Springer, Cham, 1–7. DOI: 10.1007/978-3-319-09958-3_1

Grover, S., Basu, S. (2017). Measuring student learning in introductory block-based programming: Examining
misconceptions of loops, variables, and boolean logic. In: Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ‚17). Association for Computing Machinery, New
York, NY, USA, pp. 267–272. DOI: 10.1145/3017680.3017723

Hanfstingl, B., Arzen ek, A., Apschner, J., Gölly, K.I. (2021). Assimilation and accommodation: A syste-
matic review of the last two decades. European Psychologist. 27(4), 320–337. DOI: 10.1027/1016-9040/
a000463

Hartl, P., Hartlová, H. (2010). Velký Psychologický Slovník (Great Psychological Dictionary). Portál, Praha.
Hejný, M. (1990). Teória Vyučovania Matematiky 2 (Theory of Mathematics Education 2). Slovenské pedago-

gické nakladateľstvo, Bratislava.
Hejný, M. (2004). Mechanizmus poznávacího procesu (Mechanism of cognitive process). In: Hejný, M.,

Novotná, J., Stehlíková, N. (Eds.), Dvacet pět Kapitol z Didaktiky Matematiky (25 Chapters of Didactics
of Mathematics). Univerzita Karlova, Praha, 23–42.
https://mdisk.pedf.cuni.cz/SUMA/MaterialyKeStazeni/PublikaceKnihy/25KapitolZDM.pdf

Hejný, M. (2012). Exploring the cognitive dimension of teaching mathematics through a scheme-oriented
approach to education. Orbis Scholae. 6(2), 41–55.
https://karolinum.cz/data/clanek/5036/OS_2_2012_final.41-55.pdf

Hejný, M., Kuřina, F. (2001). Dítě, Škola a Matematika: Konstruktivistické Přístupy k Vyučování (Child,
School and Mathematics: Constructivist Approaches to Teaching). Portál, Praha.

Hour of code (2015). Educational web. https://hourofcode.com/
Kalaš, I., Miková, K. (2020). Základy Programování ve Scratch pro 5. Ročník ZŠ. Textbook. Jihočeská uni-

verzita v Českých Budějovicích, České Budějovice. https://imysleni.cz/ucebnice/zaklady-pro-
gramovani-ve-scratchi-pro-5-rocnik-zakladni-skoly

Kesselbacher, M., Bollin, A. (2019). Discriminating Programming Strategies in Scratch: Making the Differen-
ce between Novice and Experienced Programmers. In: Proceedings of the 14th Workshop in Primary and
Secondary Computing Education (WiPSCE‘19). Association for Computing Machinery, New York, NY,
USA. DOI: 10.1145/3361721.3361727

Liao, Y.-K. (2000). A Meta-analysis of Computer Programming on Cognitive Outcomes: An Updated Synthe-
sis. In: Bourdeau, J., Heller, R. (Eds.), ED-MEDIA 2000 World Conference on Educational Multimedia,
Hypermedia & Telecommunications. Advancement of Computing in Education (AACE), Montreal, Canada,
598–604. https://www.learntechlib.org/primary/p/16132/

Lye, S.Y., Koh, J.H.L. (2014). Review on teaching and learning of computational thinking through programming:
What is next for K-12?. Computers in Human Behavior. 41, 51–61. DOI: 10.1016/j.chb.2014.09.012

Ma, L. (2007). Investigating and Improving Novice Programmers’ Mental Models of Programming Concepts.
PhD Dissertation. University of Strathclyde, Glasgow.

Mladenović, M., Boljat, I., Žanko, Ž. (2018). Comparing loops misconceptions in block-based and text-based
programming languages at the K-12 level. Education and Information Technologies. 23, 1483–1500.
DOI: 10.1007/s10639-017-9673-3

Molnár, J., Schubertová, S., Vaněk, V. (2008). Konstruktivismus ve Vyučování Matematice (Constructivism in
the Teaching of Mathematics). Univerzita Palackého v Olomouci, Olomouc.
http://esfmoduly.upol.cz/publikace/molnar.pdf

Nolen-Hoeksema, S., Frederickson, L.B., Loftus, G.R., Wagenaar, W.A. (2009). Atkinson & Hilgard‘s Intro-
duction to Psychology. Cengage Learning, Andover.

Ozgur, S., Pelitoglu, F.C. (2008). The Investigation of 6th Grade Student Misconceptions Originated from
Didactic about the “Digestive System” Subject. Educational Sciences: Theory & Practice, 8(1), 149–159.

Understanding Loops: What are the Misconceptions of Lower-secondary Pupils? 553

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York, NY,
USA.

Pattis, R. E. (1981). Karel the Robot: Gentle Introduction to the Art of Programming with Pascal. John Wiley
& Sons.

Piaget, J. (1970). Science of Education and the Psychology of the Child. The Viking Press: New York.
Piaget, J., Inhelder, B. (1997). Psychologie Dítěte (Psychology of the Child). Translated by Vyskočilová. Por-

tál, Praha.
Qian, Y., Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory Programming: A

Literature Review. ACM Transactions on Computing Education. 18(1), 1–24. DOI: 10.1145/3077618
Román-González, M., Pérez-González, J.-C., Jiménez-Fernández, C. (2017). Which cognitive abilities under-

lie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human
Behavior. 72, 678–691. DOI: 10.1016/j.chb.2016.08.047

Sanders, K., Thomas, L. (2007). Checklists for grading object-oriented CS1 programs: concepts and mis-
conceptions. In: Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE ‚07). Association for Computing Machinery, New York, NY, USA,
166–170. DOI: 10.1145/1268784.1268834

Sekiya, T., Yamaguchi, K. (2013). Tracing quiz set to identify novices‘ programming misconcepti-
ons. In: Proceedings of the 13th Koli Calling International Conference on Computing Education
Research (Koli Calling ‚13). Association for Computing Machinery, New York, NY, USA, 87–95.
DOI: 10.1145/2526968.2526978

Scherer, R., Siddiq, F., Sánchez Viveros, B. (2019). The cognitive benefits of learning computer programming:
A meta-analysis of transfer effects. Journal of Educational Psychology. 111(5), 764–792. DOI: 10.1037/
edu0000314

Smith III J.P., diSessa A.A., Roschelle, J. (1994). Misconceptions Reconceived: A Constructivist Ana-
lysis of Knowledge in Transition. Journal of the Learning Sciences. 3(2), 115–163. DOI: 10.1207/
s15327809jls0302_1

Sorva, J. (2012). Visual Program Simulation in Introductory Programming Education. PhD Dissertation. Aalto
University, Espoo, Finland.

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on Compu-
ting Education. 13(2). DOI: 10.1145/2483710.2483713

Sternberg, R.J. (1999). Cognitive Psychology. Harcourt Brace, Orlando.
Swidan, A., Hermans, F., Smit, M. (2018). Programming Misconceptions for School Students. In: Proceedings

of the 2018 ACM Conference on International Computing Education Research (ICER ‚18). Association for
Computing Machinery, New York, NY, USA, 151–159. DOI: 10.1145/3230977.3230995

Šimandl, V., Dobiáš, V. (2022). Analýza dat při tvorbě zakotvené teorie pomocí software atlas.ti (Using atlas.
ti software for data analysis through the construction of grounded theory). Paidagogos, 2021(1), 131–156.
http://www.paidagogos.net/issues/2021/1/article.php?id=8

Trigueros, M. (2019). The development of a linear algebra schema: learning as result of the use of a cognitive
theory and models. ZDM Mathematics Education, 51, 1055–1068. DOI: 10.1007/s11858-019-01064-6

Vaníček, J. (2019). Early Programming Education Based on Concept Building. Constructivist Foundation.
14(3), 360–372. https://constructivist.info/14/3/360.vanicek

Vaníček, J., Nagyová, I., Tomcsányiová, M. (2020). Programování ve Scratch pro 2. Stupeň Základní Školy.
Textbook. Jihočeská univerzita v Českých Budějovicích, České Budějovice.
https://imysleni.cz/ucebnice/programovani-ve-scratchi-pro-2-stupen-zakladni-skoly

Weintrop, D., Wilensky, U. (2015). Using Commutative Assessments to Compare Conceptual Understan-
ding in Blocks-based and Text-based Programs. In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research (ICER ‚15). Association for Computing
Machinery, New York, NY, USA, 101–110. DOI: 10.1145/2787622.2787721

Xia, B. S. (2017). A Pedagogical Review of Programming Education Research: What Have We Lear-
ned. International Journal of Online Pedagogy and Course Design. 7(1), 33–42. DOI: 10.4018/IJOP-
CD.2017010103

J. Vaníček, V. Dobiáš, V. Šimandl554

J. Vaníček is an associate professor and the head of the Department of Informatics in
the Faculty of Education at the University of South Bohemia in České Budějovice in
the Czech Republic. His area of interest is Informatics education in primary and lower
secondary schools and early age programming. He is an author of 7 textbooks about
information technology and programming. Between 2017 and 2020 he was a head of
the strategic project PRIM developing new Czech national informatics curricula. He has
been organizing Bebras Challenge for 14 years and he is a representative of the Czech
Republic in the International Bebras Committee.

V. Dobiáš is an assistant professor in the Department of Informatics in the Faculty of
Education at the University of South Bohemia in České Budějovice in the Czech Repub-
lic. His research activities focus on the digital divide and computational thinking.

V. Šimandl is an assistant professor in the Department of Informatics in the Faculty
of Education at the University of South Bohemia in České Budějovice in the Czech
Republic. His research activities focus on the area of Informatics education in lower
secondary schools and programming. He has been organizing the Czech Bebras Chal-
lenge for 8 years.

