
Informatics in Education, 2025, Vol. 24, No. 1, 99–144
© 2025 Vilnius University
DOI: 10.15388/infedu.2025.05

99

How to Teach Problem Solving and  
Algorithm Design in High Schools by  
Constructive Induction or How to Reach True 
Competences in Informatics Education 

Juraj HROMKOVIČ*, Regula LACHER
Universitätstrasse 6, 8092 Zürich, Department of Computer Science, ETH Zürich, Switzerland
e-mail: juraj.hromkovic@inf.ethz.ch, regula.lacher@inf.ethz.ch 

Received: September 2024

Abstract. The design of algorithms is one of the hardest topics of high school computer science. 
This is mainly due to the universality of algorithms as solution methods that guarantee the calcu­
lation of a correct solution for all potentially infinitely many instances of an algorithmic problem. 
The goal of this paper is to present a comprehensible and robust algorithms design strategy called 
“constructive induction” that enables high school students to discover solution methods for a large 
variety of algorithmic problems. The concept of constructive induction is based on searching for 
a universal method for solving any instance of an algorithmic problem when solutions of smaller 
problem instances are available. 

In general, our approach strengthens learners in problem solving and their ability to use and 
develop abstract representations. Here we present a large collection of tasks that can be solved 
by constructive induction and show how to use this method to teach algorithm design. For some 
repre sentative algorithmic tasks, we offer a detailed design of lessons in high school classes. We 
explain how our implementation of teaching in classrooms supports critical thinking, sustain­
ability of ac quired knowledge, problem solving, and the ability to abstract, and so contributes to 
reaching deep competences in algorithmic thinking. 

Keywords: critical thinking, computational thinking, algorithm design, constructive induction, 
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1. Introduction or Why Teaching Algorithms in High Schools is Not Easy 

“Why to teach algorithms?” Because it forces learners to strengthen their ability to ab­
stract and to solve problems. Abstraction and problem solving are crucial dimensions of 
the human way of thinking and basic instruments for discovering and shaping the world. 

* Corresponding author. 
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Therefore, abilities to abstract and solve problems should be a key issue in any educa­
tional system. Especially, the main focus of teaching mathematics and computer science 
has to be devoted to supporting the learner’s ability to abstract and solve problems in 
their abstract representations. 

“Why is teaching algorithms difficult?” To answer this question let us start with relating 
it to the question “Why is teaching the concept of variables in introductory programming 
courses the first big threshold?” Good programming courses for novices pay attention to 
the cognitive load of students and make sure that progress is made in very small steps. 
The starting point is to view programs as descriptions of activities in the programming 
language that are understandable for machines (computers, robots, etc.) with the goal to 
delegate the execution of these activities to technology. In this simplified scenario one 
program describes exactly one activity. If you take a good choice of your programming 
language and initial exercises, the first programs describe activities whose execution can 
be observed visually instruction by instruction (see the concept of the notional machine 
(see du Boulay (1986); Cypher (1993); Fincher et al. (2020); Hromkovic et al. (2016); 
Kohn (2017); Kohn and Komm (2018); Lieberman (2001)). With this approach students 
can develop a program and immediately investigate its properties and functionality, and 
in this way verify the correctness of their program and get ideas for extending the func­
tionality of programs. This is the reason why even very small kids in primary school can 
master some basic programming with success and joy. This is also why the repeat­loop 
with the hidden control variable was introduced to Logo (see Papert (1980)). 

If you introduce variables, even as passive input parameters, the game changes heav­
ily. Why is programming with variables much harder? One program is not responsible 
for only one activity anymore, but depending on the values of its parameters for po­
tentially in finitely many different activities (Arnold et al. (2019)). How now to check 
the functionality of your program? One cannot teach young pupils complete induction 
proving correctness of programs or any sophisticated verification method of software 
engineering. For sure you can try to test your program for a few values of its parameters. 
Consequently, you can fail to believe in the correctness of an incorrect program, but the 
main problem is whether these few tests are really sufficient to get an intuition of why 
your program should work properly for all values if its parameters. And the minimal goal 
of any computer science teacher should be to offer at least some intuition of the program 
functionality. 

An algorithmic problem consists of infinitely many concrete problem instances, and 
an algorithm is a solution method that works correctly and successfully (and if possible 
efficiently) for any one of these infinitely many instances. Hence you are asked to de­
velop a strategy that behaves well in all infinitely many possible situations. This is a very 
non trivial task, especially if you take into account that high school students have almost 
no experience with the universal quantifier. We cannot assume any experience with us­
ing mathematical induction for proving infinitely many parameterized claims, and so we 
can not strive to prove the formal correctness of the algorithms developed. Of course we 
could omit verification proofs. But if our lessons have an educational value, then they 
have to offer some reasonable intuition, why the algorithm designed works properly. 
To reach this goal, teaching must be designed in such a way that students have enough 
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freedom to de sign algorithms to a high extent on their own. First, students have to be 
guided to solve concrete instances of an algorithmic problem and using the acquired ex­
perience to design more general solving strategies. Then they have to be trained to find 
counter examples for proposed strategy to strengthen their experience. The highest art 
of successful teaching is to design a guidance that enables students to discover working 
solution strategies by their own. This is a very nontrivial task we will try to approach in 
the subsequent sections. 

Let us consider another dimension in answering our question “Why is teaching algo­
rithms in high school not easy?” A teacher can aim to explain some famous algorithm 
and the goal could be to be able to execute the algorithm by hand. We question this goal. 
First of all, the value of teaching acting according to a given pattern is very low (for a 
more detailed discussion see Hromkovic and Lacher (2023) and Dagiene et al. (2021)), 
because it contributes very little to the development of our thinking (creativity, impro­
visation, fantasy, problem solving). Every procedure we can describe can be automized 
and so executed more reliably and quicker by technology than by humans. Secondly, 
most efficient algorithms are so specifically adjusted to the problems they solve, that 
a small change in the specification of the algorithmic problem can cause (and usually 
does) the algorithm to fail. We say that such algorithms are not robust and so their teach­
ing does not guarantee any essential progress in developing and strengthening the ability 
of students to solve problems. We argue that we have to teach robust strategies for prob­
lem solving that can be successfully applied to a big variety of problems. 

The remaining question now is which of the algorithm design methods can be taught 
successfully in high schools. In the following we present and recommend one of these 
methods, called constructive induction, and show how a teacher can use it in schools 
to train problem solving and algorithm design. Constructive induction (as probably the 
old est general problem solving strategy) can be viewed as a simple version of recursion, 
and so it can be used as a well understandable introduction to more general algorithm 
design method as the famous recursive ”divide and conquer” and the bottom­up strategy 
”dy namic programming”. 

This paper is organized as follows. In Chapter 2 we present the concept of construc­
tive induction. In Chapter 3 we show how to use constructive induction to solve a variety 
of different mathematical problems. In Chapter 4 we apply constructive induction to 
design algorithms for various algorithmic problems. Finally, in Chapter 5 we present 
detailed designs of lessons in high schools for some representative mathematical and 
algorithmic tasks. The goal of presenting high school implementations is showing how 
to strengthen the ability of students to solve problems, and how to support students to 
discover algo rithms to high extent by their own instead of presenting some famous algo­
rithms to stu dents as finalized scientific products. 

2. Constructive Induction 

Every teacher knows mathematical induction (also called complete induction) used to 
prove infinitely (countably) many parameterized claims. The word induction has its ori­
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gin in Latin (“inductio” – “to lead into” in English). Probably the oldest induction proof 
was done by al­Karaji in the tenth century for proving the binomial theorem (Pascal’s 
tri angle) about the form of coefficients (Bussey (1917); Tanton (2021)). Unfortunately, 
this manuscript was lost and we only have the reference in the book “The Brilliant in 
Alge bra” by Al Samawal al­Maghribi (around 1150). In European culture induction as a 
proof method was used for the first time by Francesco Maurolico in 1575 (Vacca (1909)) 
for proving that the sum of the first  odd integers is 2. It took several years until the 
method was used again (Blaise Pascal, 1654; Jacob I Bernoulli, 1686). In 1888, Rich­
ard Dedekind started to call this proof method “complete induction.” Giuseppe Peano 
presented induc tion as a part of his axiomatic system in 1889. Since then, this method 
belongs to the fun damental instruments of mathematics. Because reading, correcting, 
and writing proofs is not a mandatory subject of mathematics in high school in most 
countries, one can ques tion whether it is reasonable to teach mathematical induction in 
computer science lessons. But we want to deal with constructive induction here, which 
is easier available to students than mathematical induction. 

Constructive induction for building sequences of objects or for solving problems is 
much older than complete induction as a proof method and was used already in ancient 
time. The simplest fundamental example is the construction of natural numbers. For 
each number  we can construct the next larger number  + 1. In this case we use the 
construc tive induction to construct an infinite sequence of objects. Another antique 
example is the claim that there are infinitely many primes. Take the  smallest primes 
1, 2, … , n. 

Now we develop a strategy for finding the next prime n+1. Take the number 

 = 1 ∗ 2 ∗ ··· ∗ n + 1 , 

which is not divisible by any of the first  primes 1, … , n. So there must be a prime 
in the interval between n + 1 and . Now one has to check these finitely many candi­
dates from the smallest one to the largest one to find the next prime. What we see in this 
example? For any , we have a strategy for how to find the ( + 1)­th prime if you have 
the first  primes, and you proved that this strategy works (i.e., that there are infinitely 
many primes). 

In the examples above we saw how we can generate the next object of an infinite se­
quence of objects step by step if we know the previous ones. For sure this method works 
only if we have or can construct the starting object of this sequence. 

We can extend the constructive induction presented above for solving problems and 
designing algorithms. The idea is as follows. First, we have to parameterize the problem. 
This means that we have to partition the set of its infinitely many instances into infinitely 
many classes numbered by natural numbers. The classes can be finite or infinite. For in­
stance, a parameter of a graph can be the number of its vertices, the number of its edges, 
the size of its adjacency matrix, the maximum degree of its vertices, or its diameter. A 
parameter of an integer can be the integer itself or the length of its representation in some 
number system. A parameter for sorting or searching can be the number of elements or 
the length of the whole input representation. After parameterizing a problem, we say that 
a problem instance is of size  if it belongs to the ­th class. 
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The idea of using constructive induction to solve problems is now very similar to 
com plete induction. First, one solves the problem for the smallest parameter, i.e., the 
smallest problem instances. We speak about the base of the induction. Then, for any 
positive inte ger n, one executes a general strategy, how to use solutions for instances 
smaller than  (with parameters smaller than ), in most cases even only with parameter 
exactly  − 1, to construct a solution for any instance of size n. The key issue here is 
searching for this general strategy. 

In Chapters 3 and 4 we show that there are plenty of problems for which such strate­
gies are quite natural and can be discovered successfully. This is important, because after 
experiencing some examples the students can start searching for algorithmic solutions 
to similar problems on their own. In Chapter 3 we show how to use induction to solve 
prob lems, and in Chapter 4 we apply constructive induction for designing algorithms. 
Chapter 5 is devoted to the presentation of a detailed implementation of lessons about 
solving al gorithmic problems by constrictive induction. We design here how teacher 
can proceed in such a way that students discover as much as doable by their own with 
minimal support (guidance instead of explanations). In this way we show how to teach 
high school students to design efficient algorithms. 

3. Solving Problems by Constructive Induction 

Before starting to solve algorithmic problems by constructive induction let us summa­
rize what the simplest version of this algorithm design method is about. Let us have a 
parametrized problem, i.e., we can assign to each problem instance its size. First, one 
has to solve the problem instances of the smallest size (usually 1). Then, one has to find 
a general strategy how to solve any instance of size  if the solutions of instances of size 
 − 1 are available. The most transparent problems for novices in algorithm design are 
problems having exactly one instance of size  for any natural number . We will start 
with exactly such problems. 

We present a sequence of problems that can be transparently solved by constructive 
induction. A detailed description of the lessons for high school students for some repre­
sentative tasks are presented in Chapter 5 (see Gallenbacher et al. (2023) for a larger set 
of tasks and also for the introduction to mathematical induction). 

The number of decimal numbers with at most n digits. The question is how many 
deci mal numbers of length at most  exist. The length of a number is the number of 
digits in its representation, which is the parameter of this problem. This is a very simple 
introductory task. 

The base of the induction is easy. We have 10 digits 0, 1, 2, …, 9, and so we have 10 

integers of length 1. To discover the general step, we always encourage students to go 
from size 1 to size 2, from size 2 to size 3, etc. until they recognize a pattern in these 
concrete steps. Going from size 1 to size 2 here means to build a table of size 10 × 10. 
In the rows there are 10 digits 0, 1, 2, …, 9, and the columns contain the 10 decimal 
numbers of length 1. Combining the labels of the rows with the labels of the columns 
we get 100 sequences of 2 digits. Any row estimates the first digit of the two digit 
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representation and the label of each column estimates the second digit. Removing the 
leading zeros, we have all 100 decimal numbers of length at most 2. The generaliza­
tion of this strategy is transparent. For the representation length at most  we take a 
10 × 10n−1 table. In the rows we have all 10 digits, and, in the columns, we have all 
sequences of  − 1 digits.

Note that this problem can be solved easier by asking which is the largest integer of 
length . The answer is the number consisting of digits 9 only. But the advantage of us­
ing this task is to get a very simple introduction to constructive induction. 

Another approach based on constructive induction is using trees in which each tree 
level is used to choose the digit on the corresponding position in the number representa­
tion (for details see Gallenbacher et al. (2023)). 

Lines in two-dimensional Euclidean space. Suppose we have  different lines in 
two­dimensional Euclidean space, and we are asked to place them in such a way that 
the num ber of crossing points is as large as possible (see Fig. 1 for an example). The 
task is to estimate the maximal number of crossing points for  lines in two­dimen­
sional Euclidean space for every . Note that the minimal number of crossing points 
is 0 if the lines are parallel to each other. Obviously, the parameter  is the number 
of lines. 

For  = 1 there is no crossing point. For  = 2 there is exactly one crossing point if 
the lines are not parallel. The strategy is to place the ­th line in such a way that it crosses 
all  − 1 already placed lines in new  − 1 crossing points. This allows us to count the 
maximal number of available crossing points of  lines. It is 1 + 2 + 3 + ··· + ( − 1). 
Exactly this sum is the product of using constructive induction and can be also derived 
by using the recurrence () = ( − 1) + ( − 1). 

Using the “small Gauss” one can get an explicit formula. But we can already use the 
sum above to develop an algorithm (program) counting the maximal number of crossing 
points of  lines for any given . The program simply computes in a for­loop the sum 
1 + 2 + … + ( − 1) for a given integer . 

The introductory example of Poya. The previous problem is only a preparation of the 
following problem used by Poya when introducing the power of induction. There are 
 lines in two­dimensional Euclidean place. What is the maximal number of areas in 
which the space can be partitioned in this way? 

One can start with 1 line getting 2 areas. Taking 2 lines one can get 4 areas. Taking 
3 lines we will get 7 areas (see Fig. 2) if no two lines are parallel. 

Fig. 1. Crossing points when lines are added in the two­dimensional Euclidean space. 
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Clearly, as pointed by Poya in his lesson, the solution cannot be 2n, and the task 
starts to be challenging. For finding the solution, solving the previous task can be help­
ful. With the ­th line added to the previous  − 1 lines we can get  − 1 new crossing 
points. 

Each of the  − 2 segments of the ­th line between two new crossing points parti­
tions an area into two subareas. The segment of the ­th line “before” the first cross­
ing point and the segment after the “last” crossing point also partitions areas into two 
subareas. Hence, adding the ­th line to the already placed  − 1 lines increases the 
number of areas by . Therefore, the maximal number of areas obtained by placing  

lines is 

2 + 2 + 3 + 4 + ··· +  . 

To see this, denote the number of areas for  lines by  () and consider  (1) = 2 

and the derived recursion  () =  ( − 1) + . 
If you are searching for a challenge, consider the number of subareas of three­

dimensional Euclidean space obtained by placing two­dimensional planes. As an ex­
ercise for students, you can take circuits instead of lines (or other suitable geometric 
objects) and ask to solve the problem by constructive induction. For more details see 
Chapter 5. 

Number of triangles in a pyramid. One can build a pyramid from equilateral triangles. 
In Fig. 3 we see the four smallest pyramids with the heights 1, 2, 3, and 4. The ques­
tion is how many triangles () are in the pyramid of height  for any positive in­
teger  . After previous experience, the students can compute  (1) = 1,  (2) = 4, 

Fig. 2. Number of areas created by 1, 2, or 3 lines. 

Fig. 3. Pyramid built from equilateral triangles. 



J. Hromkovič, R. Lacher106

and finally the recurrence () = ( − 1) + 2 − 1. To make the task easier the 
teacher may first ask for the number () of triangles in the lowest level of the pyramid 
of height . Here one can easily establish (1) = 1 and () = ( − 1) + 2, and so 
() = 2 − 1. Then the formula () = ( − 1) + () follows. If you decide 
to search for an explicit formula, you can derive () = 2. We call attention to this 
because in this way you get the classical example of the sum of the first  odd numbers 
presented by Francesco Maurolico (Vacca (1909)). 

An interesting point here is that one can calculate the number of triangles in a pyra­
mid by dividing the area of the pyramid by the area of the triangle (for instance taking 
1 as the size of the equilateral triangle as the basic building stone). One can generate 
similar tasks by building pyramids from squares or hexagons. 

Coloring regions of a map. The famous four color theorem states that 4 colors are 
al ways sufficient to color a two­dimensional map consisting of regions in such a way 
that no two neighboring regions have the same color. Two regions are considered to be 
neigh bors if they have a common continuous border consisting of infinitely many points. 
One could ask whether less colors are sufficient if the partition of the map into regions 
is done in some restricted way, for instance by placing some regular geometric objects 
into the plane. Using our experience with the task from Poya, we can pose the following 
question: A map is partitioned into regions by  lines. How many colors are sufficient 
to color the map? 

If you start with 1, 2, or 3 lines (see Fig. 4), after some attempts the students can dis­
cover that for small parameter values two colors are sufficient. So we have a hypothesis, 
but the question is how to prove it: The natural way is by constructive induction. First, 
observe that exchanging the two colors in a valid coloring leads again to a valid color­
ing. Secondly, add a new line to a map colored by two colors (see Fig. 5 left). Again, we 
can view the new line as a sequence of segments between the crossing points with other 
lines. All these segments have the same colors on both sides now and all other (previous) 
boundaries between two regions have different colors. Keep the coloring on one side of 
the new line and flip the colors on the other side. In this way we get a valid coloring of 
the new map by two colors (see Fig. 5 right). 

The strength of this task is that you can generate plenty of similar ones to train the 
class. You can take circles to partition the plane into regions, or triangles (rectangles, 

Fig. 4. Two colors are sufficient to color all areas created by 1, 2, or 3 lines. 
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etc.) with and without the request that these geometrical objects intersect in a finite 
number of points only. If the request is satisfied, two colors are always sufficient. The 
strategy is to put the next object into the plane, and then flip the colors either inside 
of the new object or outside. If the constraint is not satisfied, one can ask students to 
construct examples that need at least 4 colors to be properly colored. Then the students 
can be asked to find the reason why the previous strategy with flipping colors inside 
of the new object does not work. More details to this coloring problem we give in 
Chapter 5. 

4. Designing Algorithms by Constructive Induction 

Here we can start with the last task of the previous Chapter, which is a good example for 
moving from problem solving to algorithm design. 

Coloring regions of a map. The approach to solve the problem of dividing a plane by 
lines (circles, etc.) into regions offers an algorithm for two­coloring. Place the first line 
and color the plane with 2 colors. Then add one line after another and always exchange 
the colors on one side of the line. 

Discovering the multiplication algorithm. Only few people are aware of the fact that 
the multiplication algorithm currently used in schools was designed by constructive in­
duction. If you want to compute the product  ·  you can parameterize by the length 
of the representation of . The length of  does not matter. Suppose  consists of  +1 

digits and assume we can multiply by  with  digits. Let 

 = nn−1 … 10 . 

We can then write 

 ·  =  · (nn−1 … 10) =  · nn−1 … 1 · 10 +  · 0 . 

So, we see that one multiplication by a number consisting of  digits, one shift by 
one position (multiplication by 10), one multiplication by one digit, and one addition are 
sufficient to compute the multiplication by a number consisting of  + 1 digits. This is 
exactly the base of our school multiplication algorithm. 

To train this concept one can multiply in other number systems or take other arithme­
tic operations (further examples are in Gallenbacher et al. (2023)). 

Fig. 5. Adding a 4­th line and changing the color of all areas on one side of the new line. 
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Horner’s method. The development of Horner’s schema for evaluating a polynomial 
is a show case of applying constructive induction. Better than by any formula, the algo­
rithm is explained by Fig. 28. We discuss this task in detail in Chapter 5. 

Who is the agent. We have  people and want to discover who of them is an agent. We 
know that there is an agent among those  people. How to recognize her or him? The 
agent is the person who knows everybody (all other  − 1 people), but nobody knows 
her or him. We are allowed to pose the following questions: “Person , do you know 
person ?” and will always get the correct answer. The task is to find the agent with as 
few questions as possible. 

First we observe that there can be at most one agent in the group of people. If there 
would be two, then each of them would know the other, and so none of them could be 
an agent. The induction base for the group size of one person is simple, no question is 
needed. For the induction step, the point is to recognize that one question is sufficient 
to reduce the number of candidates by 1. If we ask whether  knows , then the an­
swer “yes” excludes  as an agent candidate. If the answer is “no,” then  cannot be 
the agent. In this way we see that  − 1 questions are sufficient to find the agent if one 
knows in advance that there is an agent in the given group of people. 

There is a wonderful extension of this task by allowing some restricted cheating (one 
or more wrong answers). This extension leads to the development of self­verifying codes 
for the corresponding numbers of errors. 

Sorting and searching. Also in this fundamental area of algorithm design the concept 
of constructive induction is very fruitful. One can start with searching for the minimum 
(or for the maximum) of  elements and design an algorithm with  − 1 comparisons 
by constructive induction. 

The next step could be to do binary search. One can take the length of the number 
representation of  (approximately the discrete logarithm of ) as the parameter for the 
size of sorted sequences of  elements. The induction step then shows that, if one can 
find an element in a sorted sequence of  elements, then one more comparison is suf­
ficient to find an element in a sorted sequence of 2 elements. 

For sorting algorithms one can consider insertion sort. If one has a sorted sequence 
of  elements and takes a new element, then one has to find its position in the sorted 
sequence. One can get different algorithms depending on the induction strategy used. If 
one uses bubble sort for placing the new element, the resulting algorithm has a quadratic 
number of comparisons. If one uses binary search, the complexity is in ( log ). 

Another sorting algorithm can search for the maximum (as bubble sort does) and 
then sort the remaining  − 1 elements. 

There are plenty of possibilities to create further exercises here (see Chapter 5). For 
instance, one can search for the  largest elements. 

Winning strategies for games. Constructive induction is a genius strategy for search­
ing for winning strategies for finite games. You label the configuration with the fol­
lowing very simple labeling rules: Start with your winning configurations and losing 
configurations defined by the game, and in each constructive step you label your further 
winning or losing configurations by going one step back in the game. 
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You continue to repeat the induction steps until all configurations of the game are 
la beled. You label a configuration as your winning configuration if you can move from 
this configuration in one step to a configuration that is already labeled as your winning 
config uration (if the turn is yours). If its your opponent’s turn, you label a configuration 
as your winning configuration if she or he can only move to one of your winning con­
figurations. When it is your turn, you label a configuration as your losing configuration 
(winning con figuration of your contrary) if all your possible moves end in an already 
marked winning configuration of your opponent. Also, you label a configuration as your 
losing configu ration, if your opponent on turn can reach in one step a winning configura­
tion for her or him. 

There are many simple games that can be completely analyzed by this strategy (for a 
variety of examples see Gallenbacher et al. (2023)). 

Dijkstra’s shortest path algorithm. This is an advanced example. Especially since the 
number of different paths between two vertices in a network can be exponential in the 
size of the network, and we want to avoid looking at all possible paths in order to find 
the shortest one. 

The key issue when developing Dijkstra’s algorithm by constructive induction is 
the choice of the parameter. First, one defines the problem of finding the shortest paths 
in a network from the source to the  closest vertices. Then  is the parameter, not the 
size of the network. The base for  = 1 is easy. One takes that neighbor of the source 
that is con nected to it by the cheapest edge. The induction step takes the tree with the  

shortest paths to the  closest vertices and argues that the shortest path to the ( + 1)­th 
closest vertex must go via the edges of the tree of the  shortest paths (for details see the 
implementation for high school students in Gallenbacher et al. (2023)). Then one can 
efficiently estimate the next closest vertex by considering only edges of the tree for the 
prefix of the path, and for the last edge on the shortest path the edges leading from the 
tree to the vertices not belonging to the  closest ones. 

If one wants to start teaching or discovering Dijkstra’s algorithm with an easier task, 
then one can search for shortest paths from a source to all other vertices in a network 
whose edges all have the same value and so develop the breadth-first-search algorithm. 

5. Teaching Constructive Induction in Classrooms 

The goal of this section is to show how to successfully implement the ideas presented in 
the two previous sections. We are far away of aiming only to explain famous algorithms 
in order to be able to execute them on arbitrary problem instances. We want to involve 
students as much as doable into the process of discovering solution methods, and so 
to reach reasonable competences in designing algorithms for given problems. This is 
related to our definition of a competence which is frequently not well understood in 
didactic lit erature and textbooks. 

”A competence is not an ability (a skill) to act (to handle) by fol-
lowing a given pattern, does not matter how complex this pattern 
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(algorithm) is. A competence is the ability to intelligently apply the 
acquired knowledge and ex perience in order to master new situations, 
problems and challenges.” 

Particularly in algorithmics education it means that we have to present such sequenc­
es of examples and challenges that pupils will start to develop own algorithmic solutions 
for new, given tasks. Our way of teaching competences uses the so called “historical (or 
genetic) Socrates method” (see Hromkovic and Lacher (2024)). 

”Do not teach the products of science and technology (facts, theo-
rems, mod els, methods, research instruments, and tools) and how to 
use them, but teach students the processes of their discovery and de-
velopment.” 

This concept is called historical (genetic) Socrates method because it focuses on 
teach ing to study the genesis of the products of science and technologies. Teachers have 
to understand the original motivations, see how to learn from failures when trying to 
make progress, and how to get the right ideas due to the acquired experience. Students 
have to learn repeating attempts to master the given challenge and evaluate the products 
of their own work (which of the goals have or have not been achieved and to which 
extent). The finest art of applying historical Socrates method consists of partitioning 
the discovery pro cess into a sequence of such small and simple challenges (steps) that 
students are able to master these particular steps to high extent by their own. Note that 
discovering algorithms in such a way, instead of learning to execute them only, offers a 
completely different level of sustainability and contributes to reaching true competences 
in computational thinking. 

In what follows we present our attempts to apply historical Socrates method for 
design ing lessons for training algorithm design for some representative high school 
classroom tasks. We use the QT (Questions and Tasks) to activate the students and ED 
(Explanations and Definitions) to introduce new objects, concepts or methods. 

5.1. Combinatorial and Geometric Tasks by Pattern of Poya 

The simplest task suitable as an introduction to this set of tasks is to study the number of 
crossing points of  lines in the two­dimensional Euclidian space. This task combines 
geometry with combinatorics and the solutions can be nicely visualized. We can start 
with the following tasks denoted as QT (questions and tasks) in what follows. 

QT 5.1.1 What is the minimal number of crossing points of  = 1, 2, 3, … different 
lines in two dimensional Euclid space (plane)? 
Solutions and expectations The students have to recognize that the answer is 0 for all 

, because one can place all the lines in such a way that each one is parallel to each 
other. One could ask students to describe the set of lines explicitly for a given con­
crete . For instance for  = 5 one can take  = 0,  = 1,  = 2,  = 3, and  = 4 (or 
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alternatively  = ,  =  + 1,  =  + 2,  =  + 3, and  =  + 4). Another gain 
of this task is to recognize that for a given number  of lines the number of crossing 
points can be different depending on the placement of the lines. 

QT 5.1.2 We have  lines in a plane, no two are parallel to each other. What is the 
minimal number of crossing points? 
Solutions and expectations The students have to recognize that the number is 1 for all 

, because all  lines can can cross in one point (see Fig. 6). Students can also provi­
de explicit description as  =  + 1,  = 2 + 1,  = 3 + 1, …. Solving this task 
should help students to discover that to get the maximal number of crossing points 
no two lines are allowed to be parallel, and no three lines are allowed to cross each 
other in the same point. 

QT 5.1.3 a) What is the maximal number of crossing points for  = 1, 2, and 3 li­
nes? 
You know the maximal number of crossing points for b) 4 lines. How to use it to 
estimate the maximal number of crossing points for 5 lines? 
Describe a general strategy how to estimate the maximal number of crossing c) 
points of  + 1 lines if the number of crossing points of  lines is known. 

Solutions and expectations a) Students develop solutions for  = 1, 2, and 3 as de­
picted in Fig. 1. Teacher should introduce the notation () for the maximal 
num ber of  crossing lines and fix in this notation: (1) = 0, (2) = 1, 

(3) = 3. 
Students can do it in an abstract way, but preferably by drawing. If students have b) 
a solution for (4), they know that to achieve the maximal number of crossing 
points they have to draw a new line (red in Fig. 7) that crosses all the already 
placed 4 lines in new crossing points. Students can discover that (5) = (4) 

+ 4 (i.e. old crossing points plus 4 new ones). If students describe this solution 
in words, teacher has to describe it as a recurrence as above. 

Fig. 6. Minimal number of crossing points for lines that are not parallel 
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Using the experience from solving b), we expect that students can formulate a gen­c) 
eral strategy for estimating ( + 1) from (). The ( + 1)­th line is placed 
in such a way that it crosses each of the already placed  lines in a new crossing 
point, and so the number of all crossing points is now ( + 1) = () + 

. Again, teacher has to bring the corresponding recurrence equation above and 
discuss with the class what this recurrence expresses. 

We use the notion ED for explanations and definitions that teacher offer to the class in 
order to introduce new objects, concepts or methods. After the experience with QT 5.1.1, 
5.1.2 and 5.1.3 teacher can introduce recurrence equations and constructive induction as 
follows. 

ED 5.1.1 Functions are models describing the relationship between the values of 
two or more attributes (variables). For instance  = () = 22 + 7 determines the 
relation ships between  and . If the value of  is known, one can use the equation 
 = 22 + 7 to estimate unambiguously the value of . If  is known, one can estimate 
all possible values of  satisfying the equation  = 22 + 7 (for instance, if  = 15, 
one can look for which  the equation 15 = 22 + 7 is satisfied). Such description of 
a function (() = formula with unknown ) is called an explicit representation (des-
cription) of function .

In QT 5.1.3 we discovered a new representation of functions from natural numbers 
to natural numbers. We have (1) =  0 and ( + 1) = () + . This descrip­
tion of the function () consists of two components. The first component (1) = 0 

estimates the value of the function for the smallest argument, and is called the base of the 
description. The second component ( + 1) = () +  explains how to compute 
( + 1) if the value of () is known, and is called a recurrence equation. We 
say that we have a recursive description of function (). 

A recursive description of a function is complete in the sense, that this description 
suffices to compute the value of the function for any natural number . In our case it 
works as follows: 

(1) = 0 

Fig. 7. Minimal number of crossing points. 
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(2) = (1) + 1 = 0 + 1 = 1 

(3) = (2) + 2 = 1 + 2 = 3 

(4) = (3) + 3 = 3 + 3 = 6, …  
For our function () one can derive the explicit representation (description) from 

its recursive description () = ( − 1) + ( − 1). 

() = ( − 1) + ( − 1) 

= ( − 2) + ( − 2) + ( − 1) 

= ( − 3) + ( − 3) + ( − 2) + ( − 1) 

= … = ( − ) + ( − ) + ( −  − 1) + … + ( − 1) 

= … = (2) + 2 + 3 + … +( − 2) + ( − 1) 

= 1 + 2 + 3 + … +( − 2) + ( − 1) . 

This description as a sum of numbers from 1 to  − 1 can be simplified as follows. 
One writes this sum twice in different order and adds the values on the same position in 
the sums. 

1 + 2 + 3 + 4 ... +  − 2 +  − 1
 − 1 +  − 2 +  − 3 +  − 4 ... + 2 + 1

 +  +  +  ... +  + 

Hence, the result is ( − 1) ∗ . Because we doubled the sum, we obtain the explicit 
representation () = ( − 1) ∗ /2 of function . 

QT 5.1.4 The following functions are given by their recursive descriptions. Compute 
their values for their 5 smallest argument, and find their explicit representations (de­
scriptions). 

 a)  () =  ( − 1) + 2( − 1) and  (1) = 1 

 b)  () =  ( − 1) + 2 and  (1) = 5 

 c)  () = 2 ∗  ( − 1) and  (0) = 1 

 d)  () =  ( − 1) + 2( − 1) + 1 and  (1) = 1 

Solutions and expectations We expect that students convince themselves that a recur­
sively described function can be computed iteratively for any value of its argument 
and can execute the computation. Optionally, teacher can ask to implement the com­
putation by a program. Because we do not want to start teaching general recursion 
at this point, we have chosen simple recursive function for which the value of () 

depends only on the value of ( − 1) (the previous value of the function for  − 1). 
The functions are chosen in such a way that they can be used by solving algorithmic 
problems presented in the following parts of this Chapter. 

 a)  (1) = 1 

 (2) =  (1) + 2 ∗ 1 = 1 + 2 = 3 

 (3) =  (2) + 2 ∗ 2 = 3 + 4 = 7 

 (4) =  (3) + 2 ∗ 3 = 7 + 6 = 13 

 (5) =  (4) + 2 ∗ 4 = 13 + 8 = 21 
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Similarly as in ED 5.1.1 one can observe that 
 () =  ( − 1) + 2 ∗ ( − 1) 
=  ( − 2) + 2 ∗ ( − 2) + 2 ∗ ( − 1) 
=  (2) + 2 ∗ 2 + 2 ∗ 3 + 2 ∗ 4 + … + 2 ∗ ( − 2) + 2 ∗ ( − 1) 
=  (1) + 2 ∗ 1 + 2 ∗ 2 + 2 ∗ 3 + … + 2 ∗ ( − 2) + 2 ∗ ( − 1) 
= 1 + 2(1 + 2 + 3 + … + ( − 2) + ( − 1)) 
= 1 + 2(( − 1) ∗ /2) 
= 1 + ( − 1) ∗  

Now, teacher may ask to use the explicit representation (description) of  () 
to compute the values  (1),  (2),  (3),  (4), and  (5), and compare them with 
the values computed by the recursion. 

In general, if deriving the explicit representation (description) of  is too hard 
for the class, it can be omitted. 
 b)  (1) = 5 
 (2) =  (1) + 2 = 5 + 2 = 7 
 (3) =  (2) + 2 = 7 + 2 = 9 
 (4) =  (3) + 2 = 9 + 2 = 11
 (5) =  (4) + 2 = 11 + 2 = 13 

Students have to recognize that the function computes odd numbers starting 
from 5. 
 () =  ( − 1) + 2 
=  ( − 2) + 2 + 2 =  ( − 3) + 2 + 2 + 2 
=  ( − ) +  ∗ 2 
=  (1) + ( − 1) ∗ 2 
= 5 + 2 ∗ ( − 1) 
 c)  (0) = 1 
 (1) = 2 ∗  (0) = 2 ∗ 1 = 2 
 (2) = 2 ∗  (1) = 2 ∗ 2 = 4 
 (3) = 2 ∗  (2) = 2 ∗ 4 = 8 
 (4) = 2 ∗  (3) = 2 ∗ 8 = 16 
 (5) = 2 ∗  (4) = 2 ∗ 16 = 32 

One can observe, that  () = 2n. Because we do not aim to teach complete 
in duction as a proof method, we do not need to strive making a formal derivation 
of the explicit representation of the function  and are satisfied with the achieved 
intuition. 
 d)  (1) = 1 
 (2) =  (1) + 2 ∗ 1+1 = 1+2+1 = 4 
 (3) =  (2) + 2 ∗ 2+1 = 4+4+1 = 9 
 (4) =  (3) + 2 ∗ 3+1 =  9+6+1 = 16 
 (5) =  (4) + 2 ∗ 4+1 = 16+8+1 = 25 

Now, the students may guess  () = 2. A helpful intuition can be obtained 
from ( + 1)2 = 2 + 2 + 1, i.e. the next quadratic value can be obtained from 
the previous one by adding 2 + 1 as the ( + 1)­st odd number. Combining 
approaches from a) and b), one can even derive  () = 2, but this is for strong 
students only. 
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ED 5.1.2 Constructive induction is a powerful method for solving problems and 
design ing algorithms. One can use constructive induction if one is able to parametrize 
the set of all instances of the problem considered. Parametrizing a problem means to 
split the set of all its input instances into disjoint classes 1, 2, 3, … or in other 
words to assign to each problem instance a natural number called the size of the ins­
tances. If a problem is parametrized, one can try to solve the problem by the following 
inductive strategy. 

 1. Induction base Solve the problem for the instances of the smallest size. 
 2. Induction step Discover how to solve any instance of size  + 1 if you have so­
lutions for instances of size . In general one can use the solutions of all instances 
of size smaller than  + 1 when solving an instance of size  + 1. 

QT 5.1.5 a) What is the minimal number of crossing points of  circles in a plane? 
What is the maximal number of crossing points of b)  = 1, 2, 3 circles in a 
plane? 
Find a recursive description of function c) () counting the maximal number of 
crossing points of  circles in a plane. 
Find an explicit description of d) (). 

Solutions and expectations Students have to be able to follow the solution schema of 
QT 5.1.3 and FD 5.1.1 and 5.1.2 to solve this task by their own. 

The answer is a) 0. One can place arbitrary many non overlapping circles in a plane 
by different strategies. For instance placing the next circle inside of the smallest 
circle or placing in some distance to the right from the previous circle. 
Students have to discover solutions as in Fig. 8. Students have to recognize that b) 
two circles can cross in at most 2 points; does not matter whether they have dif­
ferent sizes or not. To draw several circles in such a way that each circle crosses 
each other in exactly 2 points it is sufficient to have a point laying inside of all 
circles. Students fix that (1) = 0, (2) = 2, and (3) = 6. 
Students can develop a general strategy as described in Fig. 9. A new circle is c) 
added in such a way that is crosses each already placed circle in exactly two new 
points. In this way one obtains the recurrence: 
(1) = 0 and ( + 1) = () + 2 

Students can apply the solving strategy of QT 5.1.4 b) to get d) 
() =  ∗ ( − 1) 

Fig. 8. Crossing points of circles. 
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QT 5.1.6 What is the maximal number of crossing points of n ellipses in a plane? 
Solutions and expectations In this exercise we do not guide students by splitting the 

task into a sequence of more simple steps as in QT 5.1.4 and 5.1.5. We expect that 
the students manage the process of problem solving by their own. 

In comparison to QT 5.1.5 students have to discover first, that two ellipses can 
cross in at most 4 points (see Fig. 10). In this way they get the base of the induction 

(1) = 0 and (2) = 4 

The next discovery (analog to circles) is that one can draw the ( + 1)­th el­
lipse in such a way that it crosses all other ellipses (previous ones) in 4 new crossing 
points. Consequently, students derive ( + 1) = () + 4. Optimally, stu­
dents can find the explicit description () = 2 ∗ ( − 1). 

Additional exercises A benefit of our combinatorial, geometric tasks is that a variety 
of similar tasks exist and are suitable to train applying constructive induction. We list 
some of the possibilities here. 

What is the maximal number of crossing points of 1.  broken lines? Two broken 
lines (see Fig. 11) can cross in a most 4 points and the solution is the same as in 
the case of the ellipses. 

Fig. 9. Crossing points when a fourth circle is added. 

Fig. 10. Two ellipses with four crossing points. 
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What is the minimal number of crossing points of 2.  triangles, if any two triangles 
have at most finitely many common points (there is no common line belonging to 
both triangles). Following Fig. 12, two triangles can have 6 crossing points, and 
so (1) = 0 and (2) = 6. The corresponding recurrence is ( + 1) = 

() + 6 ∗ . 
One can take rectangles instead of triangles and will obtain the already known 

func tion (1) = 0 and ( + 1) = () + 4 ∗ . 
A pyramid is built from quadratic stones as in Fig. 13. The height of the pyramid 3. 
is the number of its levels. From Fig. 13 we see (1) = 1, (2) = 3, 
(3) = 6, and (4) = 10. If we increase the height by 1, we have 
to add the base level. The number of stones in the base of the pyramid of height 
 + 1 is  + 1, and so ( + 1) = () + ( + 1). 
One can consider pyramids built from triangles (see Fig. 3). Here the recur­

rence is ( + 1) = () + (2 − 1). The explicit solution is 
() = 2 because it is the sum of the first  odd numbers, the famous 
historical example of induction proofs by Francesco Maurolico (Vacca (1909)). 

Fig. 11. Two broken lines with four crossing points. 

Fig. 12. Two triangles with six crossing points. 
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After these initial pure counting tasks, we can move to more advanced geometrical 
tasks. 

QT 5.1.7 If we place lines in a plane, we cut the plane into several subareas. 
What is the minimal number of areas generated by placing a)  lines into a plane? 
What is the maximal number b) () of areas generated by placing  = 1, 2, 3 lines 
in a plane? 
How to estimate the maximal number of areas generated by c) 4 lines, if the number 
of areas for 3 lines is known? 
How to estimate d) ( + 1) when () is known for any ? 
Can you find an explicit description of e) ()? 

Solutions and expectations We have formulated this task as a sequence of smaller 
tasks in order to ask students to acquire some experience step by step before being 
able to find the final solution. 

Here is the answer easy. Drawing a)  parallel lines into a plane, we get exactly 
 + 1 areas. One can use induction here by arguing that adding one new line 
parallel to already placed  parallel lines increases the number of areas by 1 (di­
viding one area into two subareas). 
In Fig. 4 we see the solutions for b)  = 1, 2, and 3. (1) = 2, (2) = 4, (3) = 

7. 
Similarly as in QT 5.1.3, adding one new line to three lines we get three new c) 
crossing points (see Fig. 5). These three crossing points divide the new line into 
4 segments. Two segments of finite length are laying between two neighbor­
ing crossing points. Another two segments are infinite, running from a crossing 
point to infinity (see Fig. 5). Each of these 4 segments divides an area into two 
sub­areas, and so one gets 4 sub­areas more. Hence, (4) = (3) + 4. 
Applying the strategy from c) students can discover d) ( + 1) = () + ( 

+ 1). 
Applying the derived recurrence, one obtains e) () = (1) + 2 + 3 + … +  = 

1 + (1 + 2 + 3 + … + ) = 1 + ( + 1) + /2. 

Fig. 13. Pyramid built of quadratic stones with height n = 1, 2, 3, 4.
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QT 5.1.8 What is the maximal number () of areas obtained by placing  circles 
in a plane? 
Solutions and expectations Now, we expect that students can solve this step by step 

using their experience from QT 5.1.5 and QT 5.1.7. Following Fig. 14 we see that 
(1) = 2, (2) = 4, and (3) = 8. Students know that they can add a new 
circle crossing each of the already placed circles in 2 new crossing points. In this way 
the ( + 1)th circle has 2 crossing points, and so is partitioned into 2 segments. 
One segment is the part of the circle between two consecutive crossing points, and 
all segments are of finite length. Each segment of the new circle partitions an area 
into two subareas. Hence, ( + 1) = () + 2. Students already know this 
recurrence equation (QT 5.1.5 c)) and can derive () = ( − 1) + 2. Note that 
this additional 2 is coming from (1) = 2 ((1) = 0 (in QT 5.1.5 c)). 

Additional exercises One can pose the question about the maximal number of areas 
gen erating by placing different geometrical objects. If one takes  ellipses, the recurren­
ce will be (1) = 2 and ( + 1) = () + 4 by the same argument as in QT 
5.1.8. If one takes triangles crossing each other in finitely many points only, one obtains 
(1) = 2 and ( + 1) = () + 6. 

If one takes broken lines, one gets (1) = 2 and ( + 1) = () 
+ 5. 

One can relate solving tasks by constructive induction to programming. All re cursive 
descriptions of functions can be used for developing programs computing (1), (2), 
(3), … () in this order for a given . Later it is a good preparation for implementing 
 as a recursive function. 

Up to this point teacher can move to algorithmic tasks with the aim to design algo­
rithms solving a problem. 

QT 5.1.9 Teacher introduces the coloring of maps in a plane and explains that four 
colors are always sufficient for coloring a map in such a way that two neighboring coun­
tries have always different colors (no curve as a border between two countries has the 

Fig. 14. Maximal number of areas obtained by 3 circles.
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same color on both sides). Students can do coloring for several examples of maps. Now 
students have to consider only special maps that are generated by placing some lines into 
a plane. Students know already that for  lines the number of subareas must be between 
( + 1) and ( + 1)/2 (see QT 5.1.7). 

How many colors are sufficient to color maps generated by a)  = 1, 2, 3 lines? 
If one knows the solution for three lines, how can one use it to color the map after b) 
adding one more line? 
How to use a coloring with minimal number of colors for maps generated by c)  

lines to find coloring for maps generated by  + 1 lines? 
Solutions and expectations a) Students can discover that surprisingly for small ’s 

two colors always suffice (see Fig. 4 and Fig. 15). 
To master the step students frequently need some support. Teacher can give the b) 
following two hints. First, teacher can ask: ”If you have a valid coloring by two 
colors, will you get a valid coloring if you exchange the colors?” Students would 
immediately observe that the answer is ”Yes”. Now the teacher places a new line 
into a valid coloring of a map and asks to fix all segments (borders between two 
subareas) that have the same color on both sides. Students will recognize that 
all such segments are segments of the new line, and that all segments of the new 
line have this property. Now students have a good chance to discover the strategy 
exchanging the coloring on one side of the line. In this way students can show, 
that two colors are sufficient. 
To generalize the idea of c) b) to a general case of arbitrary many lines is easy. 

QT 5.1.10 How many colors are sufficient to color maps generated by placing  cir­
cles (ellipses) in a plane? 

Fig. 15. Two colors are sufficient to color maps generated by 3 lines. 
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Solutions and expectations We expect that students will recognize that two colors are 
sufficient in this scenario as well (see Fig. 16). Placing a circle (ellipse) into a valid 
coloring all segment of the new circle (ellipse) have the same color on both sides (see 
Fig. 17). Hence it is sufficient to exchange colors inside of the circle (ellipse) and 
keep the coloring outside. For sure, one can as well exchange the coloring outside 
and keep the coloring inside. Hence, two colors are sufficient. 

Additional exercises Instead of placing one kind of objects as lines or circles one can 
consider any combination of lines, circles, ellipses at once, coloring with two colors will 
always work. It does not matter whether the next object is a line or an ellipse, we always 
master to create a valid coloring. 

This works also for broken lines, if we forbid common segments, i.e. two broken 
lines may cross only in finitely many points. In Fig. 18 we see that without this prop­
erty already two broken lines may require at least 3 colors. Subareas 2 and 3 must have 
a different color than 1, because both are neighbors of 1. But subareas 2 and 3 must 
have different colors, because they are neighbors. Hence, 3 colors are necessary. Now 
one can ask students to draw broken lines in such a way that 4 colors are needed. The 
students have to be motivated to discuss why it is so. The reason is that the segments 
of the last placed object have different properties. Some of them have the same color 
on both sides and some of them have different colors on the sides of the segment. 

Fig. 16. Two colors are sufficient to color maps of three circles.

Fig. 17. A fourth circle added and two colors are still sufficient to color this map. 
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Hence, one cannot use the developed strategy of exchanging colors on one side of the 
new object. 

This task can be extended to triangles, rectangles or other geometric objects. As 
long as we require a a finite number of crossing points between two objects, two colors 
are always sufficient. If we allow common segments of two objects, then 4 colors are 
necessary. In Fig. 19 we see an example of a map generated by rectangles that requires 
4 colors. One can argue for that by the fact that each subarea is a neighbor of each other. 
One can ask students to place triangles in such a way that 4 colors are needed as well. 

5.2. Searching and Sorting by Constructive Induction 

After training constructive induction by solving geometric problems as in Chapter 5.1 it 
is quite easy to apply constructive induction to searching and sorting. Alternatively, one 
is also allowed to introduce constructive induction by solving searching problems and 
sorting because these tasks can be naturally solved by induction. 

Fig. 18. Broken lines with common segments. 

Fig. 19. Rectangles with common segments. 
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We recommend to start this topic by the following funny searching problem. 

QT 5.2.1 Who is the agent? We have  persons and we know that one of them is an 
agent. An agent is a person who knows everybody, bot nobody knows him (in a part of 
the year, you can exchange ”agent” for ”Saint Nicolas”). You are allowed to ask any per­
son  whether  knows person , and you will get the correct answer. The challenge is 
to find the agent by posing as few questions as possible. 
Solutions and expectations A good idea is to start dealing with this problem by ab­

stract, but transparent data representations (as an example see Fig. 20 left). One can 
represent the  persons by vertices of a graph and draw an arrow from  to  if  

knows . In this way the relation of knowing persons is represented by a directed 
graph. The agent is the vertex  from which there are arrows to all other vertices, 
and there is no arrow to . The challenge is to ask for the existence of arrows until 
the agent is recognized in such a way that the number of questions is minimized. 

Another representation of the problem is the adjacency matrix of the graph 
(Fig. 20 right). If there is 1 on the crossing of row  and column  , then  knows 
 . If 0 is in this crossing, then  does not know  . The agent ( in Fig. 20) is , 
if all values in row  are 1’s and all values of the column of  are 0’s. The task is in 
asking for values on different positions of the matrix until the agent is fixed, and the 
challenge is in minimizing the number of questions. We see that the number of pos­
sible edges (items of the adjacency matrix) is exactly 2 − , i.e., 2 −  questions 
are always sufficient for finding the agent among  . The challenge is to do 
it with essentially smaller number of questions. 

After getting a good feeling about the problem teacher could help by asking 
whether it is possible to have 2 or more agents. Students have to recognize that this 
is impossible. If  and  would both be agents, then  would know  and  has to 
know X. But then none of  and  could be an agent, because somebody else knows 
each of them. Note, that in our task we assume that one of the persons is an agent. 
Without this assumption the problem would be a little bit different. 

Now, the crucial point is to recognize that one question can reduce the number 
of can didates for the agent by 1. If you ask ”, do you know ?”, you can get two 

Fig. 20. Directed graph and adjacency matrix for the example of 6 persons.
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answers. If  knows B, then  cannot be the agent. If  does not know B, then  

cannot be the agent. Hence, one question can reduce the size of the problem (the 
number of candidates) by 1. 

Two different algorithms can be developed. The recursive one poses a question 
and reduces the problem instance to the call for solving a problem instance of size 
smaller by 1. The algorithm based on dynamic programming will start with two per­
sons and pick one of them as a candidate for the agent by one question. Alternatively 
one can start with one person and saying that he is the agent without posing any ques­
tion. After that you repeat the induction step. In one step you add one new person 
 into the game and ask whether  knows the current candidate. Depending on the 
answer, you fix the new candidate. Both solving strategies need  − 1 questions to 
find the agent among  persons. 

QT 5.2.2 We have  cards with a well defined linear order. One could also create cards 
that have an integer on one side and on the other side they are identical. All cards are 
covered and the task is to find the card with the maximal value. The only one allowed 
operation called ”comparison” is to reveal two cards and compare their values. The 
challenge is to find the card with the maximal value by the smallest number of compar­
isons. Another implementation of the game can be done with  identical objects with 
different weights. The only operation allowed is using a scale to compare the weights 
of two objects. 
Solutions and expectations After solving QT 5.2.1 this task is easy. Students immedi­

ately observe that comparing the values of two cards one can exclude one of the cards 
as a candidate for the maximum and so reduce the size of the task by 1. Again, us ing 
this fact one can design a recursive algorithm or comparing the winner of the last 
comparison with the next object. 

QT 5.2.3 One has  covered cards as in QT 5.2.2 distributed chaotically on the table. 
The task is to find the card with a concrete value . Students have to play this search 
several times for different values and note the number of cards revealed until the card 
with the correct value  has been found. 
Solutions and expectations Students will recognize that this kind of searching in cha­

os is a matter of luck. Sometimes, the card searched for is found quickly, sometimes 
almost all cards have to be revealed. On average, about half of the cards are revealed 
until the card searched for has been found. The conclusion is that if one is frequently 
searching for something, it is reasonable to invest effort in creating a order of all 
objects to make searching more efficient. 

QT 5.2.4 Binary Search We have  covered cards in a line on positions 1 to  and 
we know that the cards are ordered from the smallest one on the left side and the largest 
one on the right side. We hold one revealed card in our hand and are searching for the 
position containing this card. The challenge is to find this position by revealing as few 
cards as possible. 
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Solutions and expectations For this task it is important that the values of the cards are 
unknown and may be very different. If one uses only cards of values 1 to , then the 
card  is on the position  and we do not need to search for it. 

To involve students in the discovery of binary search, teacher can ask the fol­
lowing question. ”Reveal one arbitrary card and compare its value with the card you 
are search ing for. What can you conclude from this comparison?” Students have to 
recognize that if  is larger than the number on the revealed card, then the position 
of the card with the value  must be placed to the right of the revealed card and the 
cards (positions) to the left of the revealed card are out of the game. If  is smaller 
than the value of the revealed card, then the position of the card with value  must 
be to the left of the revealed card. 

After this discovery students have to recognize that the best way of choosing 
a card to be revealed is to take the position in the middle. This way, revealing one 
card nar rows the search space to half it’s former size, or offers the card searched 
for. Students have to play with numbers to see that for  = 1′000 cards 10 revealed 
cards always suffice, for  = 1′000′000 20 revealed cards are enough, and for 
 =1′000′000′000 at most 30 revealed cards guarantee a successful searching. We 
recommend here to use the opportunity (if students do not know logarithmic func­
tions) to introduce the discrete logarithm of  by base 2 as the smallest number  

such that 2k ⩾ . The only pre­knowledge required is to know potence functions n 
for any constant . One can introduce notation c() for the discrete logarithm 
of  by base . 

Additional exercises The following task is a generalization of QT 5.2.2 (searching for 
the maximum or for the minimum in  unsorted cards). The task is to find the three cards 
with highest values from the set of covered cards. The simplest idea based on induction 
is to take three arbitrary cards and sort them by 3 comparisons. Let 3() denote 
the number of comparisons of searching for the three cards with highest values. Hence, 
the base is 3(3) = 3. Now, one can take one card after another and compare, if 
necessary, with all three up to now maximal cards. This way one could get 3( + 

1) = 3() + 3, which offers finally 3() = 3 ∗  − 6. 
Now, one can improve this algorithm by the idea of binary search. If 3 ⩽ 2 

⩽ 1 are the three maximal values up to now, then the new value  is compared 
with 2. If   2, then  is still compared with 3. If   2, then  

is still compared with 1. In this way one obtains the recurrence 3( + 1) = 

3() + 2, and so a faster algorithm with the complexity 3() = 2 − 3. 
For strong students teacher may still ask to improve this algorithm. Consider the fol­
lowing strategy for searching for two largest elements. Let be  = 2k for some . To 
estimate the maximum one can play a tennis tournament with  = 2() rounds 
(see Fig. 21). After that it is obvious that the second largest value must be among the 
 elements (red in Fig. 21) that directly lost in the comparison with the maximum. To 
find the maximum of these  elements costs  − 1 comparisons. So, the number of 
comparisons altogether is ( − 1) + ( − 1) =  + 2() − 2, which is much 
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better than 2. If one uses this strategy for searching for the 3 maximal elements, then 
the sufficient number of comparisons is 

( − 1) + ( − 1) + ( − 2) + 2() 

=  +2 + 2() − 4 

=  +22() + 2(2()) − 4 

which is much better than 3 − 6. 
Another interesting task we formulate so, that one does not need to work with 

covered cards. We have  runners taking part in an endurance race. All finished the 
race and no two have the same time because the measurement is very exact. You are 
allowed to ask questions such as ”Runner A, have you been faster that runner B?”, 
and you will get the correct answer. The challenge is to simultaneously estimate the 
winner as well as the last runner by as few questions as doable. The motivation is that 
the last runners will get a special price as the strongest fighter (some endurance races 
really do it). Using constructive induction you ask the question for arbitrary two run­
ners A and B. Max is the candidate for the winner and Min is the candidate for the last 
runner. If A was faster than B, then Max = A and Min = B after the first question. Then 
one asks the next runner and after comparing him with Max and Min, one can update 
Max and Min. Hence, (2) = 1 and ( +1) = () + 2, 
which offers () = 2 − 3. This task can be solved better without induction. 
Consider  is even. One partitions  runners into /2 pairs and compares the runners 
inside of pairs by /2 comparisons. Then one can estimate the absolute winner by 
/2 − 1 comparisons from the winners of the first /2 comparisons. Analogously, one 
can estimate by /2 − 1 comparisons the very last runner from the /2 losers of the 
first comparison round. Altogether the number of comparisons is /2 + 2(/2 − 1) = 

3/2 − 2. This is the fastest possible algorithm. Interestingly one can get this optimal 
complexity by ”divide and conquer”. One splits  runners in two equally­sized groups 
and estimates recursively the minimum and the maximum in each of the two groups. 
Finally, the minima and the maxima are compared by two comparisons. This offers 
the recursion () = 2(/2) + 2 and (2) = 1. We do not 

Fig. 21. Improving the efficiency of an algorithm with the graph of a tennis tournament. 
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recommend to go from this recurrence to the explicit representation of the function be­
cause it is too difficult for high school pupils. On the other hand, one can easily verify 
that 3/2 − 2 is the solution of the recurrence equation above. One inserts 3/2 − 2 

for () on the left side of the equation and then replaces (/2) by 
3/2(/2) − 2 on the right side of the equation. A simple calculation shows that the 
left side is equal to the right side. 

QT 5.2.5 a) There are 9 objects that all look the same, but one of them is heavier than 
all other ones, and all others have the same weight. How many comparisons on a 
scale (see Fig. 22) do you need to find the heaviest one? 
The same but you have 27 identically looking objects. Can you fix the heaviest b) 
one by three times weighing? 
You are allowed to weigh c)  times. What is the maximal number of identical look­
ing objects for which you can determine which is the one that is heavier than all 
the others? 

Solutions and expectations a) This task opens a new dimension when taking the com­
plexity as the number of comparisons. It is not required in the task formulation 
that you are only allowed to compare one single object with another single object. 
One can weigh a collection of objects against another collection of objects. This 
can be a hint if the class does not master this challenge. Another help could be to 
start with 3 objects with one comparison and then to extend it to 6 objects with 
2 compar isons. The solution is that two comparisons for 9 objects are sufficient. 
In the first weighing, one compares the weight of two groups each of which has 
three objects. If one group is heavier than the other one, then the heaviest object 
is one of the 3 objects of the heavier group. If the weight of both groups is equal, 
then the heaviest object is among the 3 objects not included in the comparison. 
This is the classi cal constructive induction (note, that the parameter is the number 
of comparisons), because by one comparison we reduce the size of the problem 
from 9 objects to 3 objects. Hence, (1) = 3 and (2) = 9 if () is the num­
ber of objects from which the heaviest can be found by  comparisons. 

If the class does not discover the above strategy by its own, the teacher can 
help by the following questions. Put 4 objects on each side of the scale. If the 
weights are equal, what can you conclude? If one group of 4 objects is heavier 
than the other, what can you conclude? 
With the experience with solving a), the class will recognize that b) (3) = 27 (or 
even (3) = 3 ∗ (2)). One compares two groups of size 9 and this comparison 

Fig. 22. Scale to compare the weight of objects. 
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reduced the number of objects candidating for the heaviest one from 27 to 9, i.e., 
to one third. 
c) Now the inductive strategy is already discovered and the class can establish c) 
( + 1) = 3 ∗ () and take (1) = 3 or (2) = 9 as the base. It is not 
hard to derive the explicit solution ()=3n. The class has to be able to explain 
the algorithm for all numbers of objects, not only for the numbers of the form 3k. 
 comparisons are sufficient and necessary for the number of objects between 
3k−1 + 1 and 3k. 

After mastering different searching tasks as above teacher can move to sorting. If 
one wants to discuss partial order and linear order before dealing with sorting we recom­
mend an appropriate design of lessons in Gallenbacher et al. (2023). 

QT 5.2.6 Teacher proposes the following sorting inductive strategy taking one element 
after another and bringing it to its correct position. Start with one element that is already 
sorted. Having a sorted sequence of  elements take the next element and place it on the 
correct position in the sorted sequence. 

Implement the placement of the new element as follows. Compare the new ele­a) 
ment with the smallest (the leftmost) element of the sorted sequence. If the new 
element is larger, continue to compare it with the next smallest element and move 
from the left to the right until the new element is larger. 

In which order 10 numbers 1, 2, 3, … , 10 have to come that the number of 
com parisons is the smallest possible? 

In which order 10 numbers 1, 2, 3, … , 10 have to come that the number of 
com parisons is the largest possible? 

What is the largest number of comparisons executed by the algorithm when 
sort ing  elements? 
Implement the placement of the next element by using binary search. How many b) 
comparisons this algorithm executes in worst case? 

Expectations and Solutions a) First, students have to recognize that the number of 
com parisons executed depends heavily on the order of elements to be sorted. 
They can execute the algorithm for a few sequences of elements to see this fact. 

Taking the order 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 students have to discover that this 
is the easiest case because the next element is always smaller than the smallest 
element of the already sorted subsequence. In this way 9 comparisons are suffi­
cient to get the sorted sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. We expect that students 
can generalize this experience for arbitrary , and so fix that  − 1 comparison 
suffices for elements in the opposite order. 

Taking the elements in the already sorted order 1, 2, 3, 4, … , 10 will cause 
the most work because each next element will be compared with all elements 
of the already sorted sequence. In this case the number of comparisons is 1 + 

2 + 3 + ··· + 9 = 45. After that students should be able to generalize this 
worst­case scenario to  element and establish the upper bound on the number 
of comparisons 
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1 + 2 + 3 + ··· + ( − 2) + ( − 1) =  ∗ ( − 1)/2. 
Students start with executing this algorithm with covered cards and recognize b) 
how the placement of the next element in a sorted sequence of  elements can be 
done by binary search by at most 2()+1 comparisons. After that they see 
that the maximal number of comparisons executed is 

1 + 1 + 2(3) + ··· + 1 + 2( − 1). 
Now teacher can help to upperbound this formula by ( − 1) ∗ (1 + 

2( − 1)). 

QT 5.2.7 Teacher proposes sorting by repeatedly using the already known algorithm 
for finding the maximum in an unsorted sequence of elements. The induction step is 
ob vious. One finds the maximum of the current unsorted sequence and moves it as the 
smallest element to up to now (already) sorted sequence. In this way estimating the ma­
ximum decreases the number of elements in the unsorted sequence by 1. 

How many comparisons always suffice to order a)  elements by the strategy de­
scribed above? 
Execute this algorithm with numbers written on covered cards. Are there some b) 
un ordered input sequences that use less comparisons than in the worst case es­
tablished by a)? 

Expectations and solutions a) Students already know that estimating the maximum 
of  unsorted elements ( covered cards) costs exactly  − 1 comparisons. 
Repeating this algorithm for sequences of length ,  − 1.  − 2, … , 2 causes 
altogether 
( − 1) + ( − 2) + ( − 3) + ··· +1 =  ∗ ( − 1)/2 

comparisons. 
If this algorithm is executed with covered cards, the number of comparisons is b) 
al ways the same, i.e., the order of elements in the input sequence does not matter. 
Students have to be able to discover it by their own. For students it is interesting 
here to see the contrast to QT 5.2.6 a), where the number of comparisons ex­
ecuted depends heavily on the order of elements in the input sequence. 

Additional exercises Teacher can allow only one very simple operation on a sequence 
of elements. One can compare two neighboring elements only and depending on the re­
sult of the comparison exchange their order. Students are asked to develop an algorithm 
that starting with an arbitrary potentially unordered sequence of elements finishes with 
the sorted sequence of these elements. In this way students are forced to develop Bubble­
sort or something very close to that. After developing Bubblesort, students can optimize 
their algorithm by formulating a criterion for stopping the work as soon as the sequence 
is already sorted. All this can be implemented by a program. Additionally students can 
search for initial sequences causing the smallest possible number of comparisons and for 
the opposite worst case input sequence. 
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5.3. Arithmetics 

One of the fundamental tasks of informatics is the development of abstract representa­
tions of some objects in such a way that the work with these abstract representations 
is efficient and transparent. The development of number representations and design of 
algorithms for executing fundamental arithmetic operations is the most impressive his­
torical example of this kind. Constructive induction has played a majorrolein the devel­
opment of arithmetics. 

If we look at arithmetics in primary school, we see that 

 +  =  + ( − 1) + 1,  + 0 =  
 −  =  − ( − 1) − 1,  − 0 =  
 ∗  =  ∗ ( − 1) + ,  ∗ 1 =  
 :  = ( − ) :  +1,  :  = 1,  :  = 0 for 0 ⩽  <  

We see that in this inductive descriptions of the basic arithmetic operations the pa­
rameter is always the value of one of the two operators ( for addition, subtraction, and 
multiplication, and  for division). Here we see that adding 1 (+1) and subtracting 
1 (−1) is sufficient to compute any addition and any subtraction of two integers. Multi­
plication can be executed by additions only, and division can be calculated by repeated 
subtraction. Teacher in high school has the opportunity to discuss it and let the pupils 
program the execution of the four basic arithmetic operations by only using operations 
+1, −1, and the test whether the value of some variable is 0 in a while­loop. 

When dealing with arithmetic operations in high schools we recommend to take the 
length of the number representation (the number of digits in the decimal representation) 
of one of the arguments as the parameter. Here we are showing how our school multipli­
cation algorithm has been developed by constructive induction. 

QT 5.3.1 Assume, one can multiply by any digit (a number of the representation length 
1) and by 10. 

Consider the following two multiplications: a) 

Explain how the multiplication by a digit can be used for the multiplication by 
numbers of length 2 (consisting of two digits). 
Consider the multiplication by a three­digits number. b) 
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Write in the empty boxes which calculation has been executed in the 
correspond ing row. Explain how the multiplication by a two­digits number can 
be used to cal culate the multiplication by any three­digits number. 
Let c)  =  be the representation of a number of length 4, where , , , and  

are digits. Explain the meaning of the follwoing abstract alculation for an arbi­
trary number . 

 ∗  =  ∗  =  ∗  +  ∗  ∗ 10 ∗ 10 ∗ 10 

Use this formula to compute 1856 ∗ 2937 ( = 1856,  = 2937). 
Explain in general for any length d)  + 1 of  = nn−1 … , 1, 0, how to calcu­
late  ∗  when one can calculate multiplication by numbers of length . 

Solutions and expectations a) We expect that the students recognize that multiplica­
tion by a two­digit number can be executed by two multiplications by a digit, 
one multi plication by 10 and one addition. At this point teacher can introduce 
the following abstract description of this calculation. First starting with the given 
example, 

1856 ∗ 37 = (1856 ∗ 7) + (1856 ∗ 3) ∗ 10 

Then taking  =  for digits  and  as an abstract representation of a two­
digit number, we can describe the calculation as follows: 

 ∗  =  ∗  = ( ∗ ) + ( ∗ ) ∗ 10 

Students can easily insert the missing calculations in the empty boxes: b) 

1856 ∗ 7 = 12992 

1856 ∗ 3 ∗ 10 = 55680 

1856 ∗ 9 ∗ 10 ∗ 10 = 1670400 

In general, the students can claim that the multiplication by a three­digit num­
ber can be calculated by three multiplications by one digit, three multiplications 
by 10 and two additions. But teacher asks students to describe the process of 
multiplying by three­digit numbers by multiplying by a two­digits number. For 
the concrete example it looks like: 

1856 ∗ 937 = 1856 ∗ 37 + 1856 ∗ 9 ∗ 10 ∗ 10 

In general taking  =  students should be able to derive the following 
description of the multiplication: 

 ∗  =  ∗  =  ∗  +  ∗  ∗ 10 ∗ 10 

After the experience with the abstract representations from b), students should be c) 
able to understand this calculation description and use it for concrete numbers. 

1856 ∗ 2937 = 1856 ∗ 937 + 1856 ∗ 2 ∗ 10 ∗ 10 ∗ 10 



J. Hromkovič, R. Lacher132

= 1739072 + 3712000 
= 5451072 

This task is only for strong students. But all students can try to solve the task for d) 
multiplyers of length 5 as follows: 

 ∗  =  ∗  =  ∗  +  ∗  ∗ 10 ∗ 10 ∗ 10 ∗ 10 

In general it looks as follows: 

 ∗  =  ∗ nn−1 … 210 =  ∗ n−1 … 210 +  ∗ n ∗ 10n 

Additional exercises If the abstract representation of the calculation is too hard for the 
class, then teacher can omit it and use it for concrete numbers only. For instance: 

4268 ∗ 31759 = 4268 ∗ 1759 + 4268 ∗ 3 ∗ 104 

For strong classes teacher can introduce another way of expressing the calculation of 
 ∗ , and ask for explaining the difference to the previous one. 

 ∗  =  ∗  ∗ 10 +  ∗  

Now teacher can ask which of these calculations is more efficient. The answer is the 
new one, because we have only one multiplication by 10 in this induction step. Both 
calculations use one addition, one multiplication by a digit, and one multiplication by a 
number with a shorter representation. 

One can also use constructive induction to develop the common division algorithm 
for  : , where the parameter is the representation length of  (for details see Hromk­
ovic and Lacher (2024)). 

QT 5.3.2 One has to design a strategy for computing 6 (the sixth power of ) for an 
arbitrary number . For the multiplications the only allowed arguments are  itself and 
the results of previous multiplications. The following three strategies are proposed: 

Strategy 1: Strategy 2: Strategy 3:
2 =  ∗  2 =  ∗  2 =  ∗ 
3 = 2 ∗  3 = 2 ∗  4 = 2 ∗ 2

4 = 3 ∗  6 = 3 ∗ 3 6 = 4 ∗ 2

5 = 4 ∗ 
6 = 5 ∗ 

We are searching for a strategy using a minimal number of multiplications. Which a) 
of these strategies is the best? Does there exist a strategy for computing 6 with 
less than 3 multiplications? 
Find two different strategies for computing b) 24 by 5 multiplications only. 
Find the best strategy for computing c) 64. 
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Find a strategy to compute d) 13 by 5 multiplications. 
Find a strategy for computing e) 45 by 8 multiplications. 

Solutions and expectations a) Students easily observe that both strategies 2 and 3 use 
3 multiplications, and so they are better than strategy 1. To answer the second 
question may be hard for the students and teacher may help here. For next tasks 
it is helpful to see the argument that 3 multiplications are necessary to compute 
6. If we have only , the only one multiplication we can do as first is 2 =  ∗ 
. Now we have two numbers,  and 2. The biggest number we can obtain is 4 
as 2 ∗ 2. So, one cannot compute any number larger than 4 by two multiplica­
tions and the given rules. 
Using the ideas of strategies 2 and 3 from a) students can compute b) 24 by 5 multi­
plications in two different ways: 

2 =  ∗  2 =  ∗ 
3 = 2 ∗  4 = 2 ∗ 2

6 = 3 ∗ 3 8 = 4 ∗ 4

12 = 6 ∗ 6 16 = 8 ∗ 8

24 = 12 ∗ 12 24 = 16 ∗ 8

Here students should discover the following strategy. Try to calculate as larg­c) 
est num ber as possible (to get the highest power of ) until your results remain 
smaller than 13. Then try to get 13 by multiplying some of the numbers (powers 
of ) already calculated. 

The first phase here is: 

2 =  ∗ 
4 = 2 ∗ 2

8 = 4 ∗ 4

Because 16 is bigger than 13 we stop the first phase here. 
The second phase uses the fact that 13 = 8 + 4 + 1. 
12 = 8 ∗ 4
13 = 12 ∗ 
Teacher has to introduce and discuss this strategy if students do not discover 

it or present their solutions as an ad­hoc solution only. But this strategy for com­
puting 13 by 5 multiplications is unique, so students must calculate as above if 
they found a solution. 
After discussing the general strategy in c) students have to be able to apply it d) 
again for another power of . 

The first phase is: 
2 =  ∗ 
4 = 2 ∗ 2

8 = 4 ∗ 4 

16 = 8 ∗ 8 

32 = 16 ∗ 16 
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The second phase uses 45 = 32 + 8 + 4 + 1. 
40 = 32 ∗ 8

44 = 40 ∗ 4

45 = 44 ∗ 

QT 5.3.3 Use the constructive induction to explain why 2
i
 can be always computed 

by  multiplications. 
Solutions and expectations If this formulation of the task is too hard for the class, te­

acher can split the task in the sequence of subtasks. How many multiplications are 
sufficient to compute 2, 4 = 2

2
, 8 = 2

3
, 16 = 2

4
, …. 

,  = ,  = ,  = , …. For the concrete cases students see immediately that 
2 can be computed by 1 multiplication, 4 = 2

2
 by 2 multiplications, 8 = 4 ∗ 

4 by 3 multiplications, etc. 
In general 2

n+1
 = 2

n
 ∗ 2

n
 = 2*2n

Hence one multiplication suffices to move from 2
n
 to 2

n+1
. 

QT 5.3.4 Explain why for  ⩾ 4, n can be always calculated by 22() − 2 

mul tiplications. 
Solutions and expectations Students already know the general strategy of two phases 

and so can try to estimate the number of multiplications for each phase. If  is a 
power of two, i.e.,  = 2m, then  = 2() multiplications are sufficient to 
compute n in the first phase and there is no second phase. If 2m−1    2m, then 
the first phase consists of  − 1 = 2() − 1 multiplications. 

For the second phase the  values , 2, 4, … , 2
m−1

 are available. The key 
point now is that each of these values can occur at most once in a product of the 
second phase, and so the number of multiplications is at most  − 1 = 2() 

− 1. Why each computed value (a power of ) is used at most once? Because it is the 
same as paying the value  by binary coins of values 1, 2, 4, 8, … , 2m−1 in such a 
way that the number of coins used is minimal. In this case we cannot use any coin 
twice because we can exchange two coins of the same value by one coin with the 
double value. 

QT 5.3.5 Find the n­th powers of , i.e., n for any  such that our strategy uses exac­
tly 22() − 2 multiplications. 
Solutions and expectations One can start with small powers. Students can find that 

7 is such a case 2(7) = 3 and so 22(7) − 2 = 4. Our strategy uses 4 
multi plications. 

2 =  ∗ 
4 = 2 ∗ 2

7 = 4 ∗ 2 ∗  

Another power is 15. 2(15) = 4, and so 2 ∗ 2(15) − 2 = 8 − 2 = 6. 
We need correspondingly 6 multiplications. 
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2 =  ∗ 
4 = 2 ∗ 2 

8 = 4 ∗ 4

15 = 8 ∗ 4 ∗ 2 ∗  

After this students can recognize that the powers  with the maximal number 
2 ∗ 2() − 2 of multiplications have the form  = 2m − 1. This is because 
their binary representations consists of 1’s only, and so we have to sum all binary 
coins to get the value . 

Additional exercises After QT 5.3.2 teacher can offer several challenges asking for 
com puting different powers of  by a minimal number of multiplications in order to get 
more experience. One can look also for powers for which more than one optimal strat egy 
exists. Another alternative starting point may be calculating  ∗  by using the maximal 
number of additions. For instance for 10 ∗  one can proceed as follows: 

2 =  + , 4 = 2 + 2, 8 = 4 + 4, 10 = 8 + 2 

or alternatively 
2 =  + , 4 = 2 + 2, 5 = 4 + , 10 = 5 + 5 

We finish our teaching sequence in calculations with Horner schema – a prime ex­
ample of using constructive induction in algorithm design. 

Explanation A transparent way of describing calculation processes are circuits. An 
algorithm for computing 7 can be represented as the circuit in Fig. 23.

2 =  ∗ , 4 = 2 ∗ 2, 6 = 4 ∗ 2, 7 = 6 ∗  

One can build circuits also for more than one input ( in our example). One can 
compute the value of 2 +  +  for four input values , , , and  by the fol­
lowing algorithm. 

2 =  ∗ , 2 =  ∗ 2,  =  ∗ , 2 +  +  

This algorithm uses 3 multiplications and 2 additions and is represented by the 
circuit in Fig. 24. The elements of the circuit computing the arithmetic operations are 
called multiplication­gate and plus­gate. 

In Fig. 24 we see that we have four inputs , , ,  (instead of only one as in 
Fig. 23). This circuit computes the value of 2 +  +  for all infinitely many pos­
sible values of input parameters , , , and  with 3 multiplications and 2 additions. 
In this sense circuits in Fig. 24 is universal because it works properly and with the same 
complexity (number of operations executed) for all possible values of , , , and . 

QT 5.3.6 Improve the universal circuit from the pervious example for evaluation 
2 +  +  in such a way that it will have only two multiplications gates and two 
addition gates. 
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Solutions and expectations If the class does not progress by its own, teacher can help 
with two hints. The first one is: ”Try to transform the expression 2 +  +  into 
an equivalent expression with only two multiplications”. If the first hint does not 

Fig. 23. Circuit to compute x7 using 4 multiplications from the input value x. 

Fig. 24. Circuit to compute the value of ax + bx + c from four input values. 
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help, teacher may indicate that this transformation could use the distribution law. At 
latest after the second hint the class can discover 

2 +  +  =( + ) +  

and discuss the optimal circuit for the desired expression (see Fig. 25). 
Teacher can make this task easier for students, if instead of working with the 

abstract expression 2 +  + , teacher works with a concrete expression like 
72 + 13 + 27. 

QT 5.3.7 Transform the following expressions in a form that minimizes the number 
of multiplications.  

 a) 73 + 52 + 28 + 13 

 b) 294 + 1133 − 522 + 17 − 113 

 c) 3
3 + 22 + 1 + 0 

 d) 4
4 + 33 + 2

2 + 1 + 0 
Solutions and expectations Students already know that the main idea is to use the dis­

tributive law, and so one can expect that students even find different transformations 
leading to the optimal solutions. 

 a) 73 + 52 + 28 + 13 = (72 + 5 + 28) + 13 = ((7 + 5) + 28) + 13 

73 + 52 + 28 + 13 = (7 + 5)2 + 28 + 13 = ((7 + 5) + 28) + 13 

There are exactly three multiplications 7, (7 + 5) ∗ , and ((7 + 5) ∗  + 

28) ∗  to be executed. For training reasons teacher may ask to draw the circuits 
that correspond to the desired expression. 

Fig. 25. Circuit to compute the value of (ax + b) ∗ x + c. 
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 b) 294 + 1133 − 522 + 17 − 113 

= (293 + 1132 − 52 + 17) − 113 

= ((292 + 113 − 52) + 17) − 113 

= (((29 + 113) − 52) + 17) − 113 

294 + 1133 − 522 + 17 − 113 

= (29 + 113)3 − 522 + 17 − 113 

= ((29 + 113) − 52)2 + 17 − 113 

= (((29 + 113) − 52) + 17) − 113 

Students see that the sufficient number of multiplications is 4, and could get 
already the general idea that polynomials of degree  can be evaluated by  mul­
tiplications. Teacher can ask students to count the number of additions in this poly­
nomial eval uation form and fix that the number of executed additions is also four. 
 Students have to do the same as in a) but in an abstract setting c) 
3

3 + 2
2 + 1 + 0 

= (32 + 2 + 1) + 0 
= ((3 + 2) + 1) + 0 
 d) 4

4 + 3
3 + 2

2 + 1 + 0 
= (4

3 + 3
2 + 2 + 1) + 0 

= ((4
2 + 3 + 2) + 1) + 0 

= (((4 + 3) + 2) + 1) + 0 
Explanations Converting the evaluation of the polynomial 33 + 2

2 + 1 + 

0 of degree 4 into a more efficiently computable expression can be viewed as the 
reduction of evaluating polynomials of degree 3 into the evaluation of polynomials 
of degree 2. 

3
3 + 2

2 + 1 + 0
= (32 + 2 + 1) + 0 
This can be transparently expressed by Fig. 26 

QT 5.3.8 Express the evaluation of polynomials of degree 4 as the reduction to evalua­
tions of polynomials of degree 3 in terms of expressions as well as in terms of circuits 
as in the explanation above. 
Solutions and explanations After the experience with QT 5.3.7 and explanations stu­

dents can master this step in the development of schema of Horner easily by their 
own. 

4
4 + 3

3 + 2
2 + 1 + 0

= (43 + 3
2 + 2 + 1) + 0

This is expressed in Fig. 27. 

QT 5.3.9 Express in terms of circuits the evaluation of polynomials 
n+1

n+1 + nn + ··· + 2
2 + 1 + 0

of degree +1 by the evaluation of polynomials of degree . How many multiplications 
and additions are sufficient to evaluate an arbitrary polynomial of degree ? 
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Solutions and expectations After solving QT 5.3.8 students must see how the reducti­
on from evaluating polynomials of degree  + 1 to evaluating polynomials of degree 
 works (see Fig. 28). 

Teacher can additionally support students to express this reduction in terms of 
algebraic expressions. The main reason for this support is not related to the under­
standability of the reduction itself, but in missing experience with working with pa­
rametrized expres sions. 

n+1
n+1 + nn + n–1

n–1 + ··· + 2
2+ 1 + 0

= (n+1
n + nn–1 + n−1

n–2 + ··· + 2 + 1) + 0 

Fig. 26. Circuit reducing a polynomial degree 3 to degree 2. 

Fig. 27. Circuit reducing a polynomial degree 4 to degree 3.
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From the presented reduction students see that by increasing the degree of 
polynomi als by 1 the number of multiplications in their evaluation is increasing by 1, 
and the same is true for the number of additions. If () is the number of multiplica­
tions in the evaluation of polynomials of degree , and () denotes the number of 
additions, then we showed that 

( + 1) = () + 1 and ( + 1) = () + 1 

Obviously (0) = 0, (0) = 0, and (1) = 1, (1) = 1 

From this students can already conclude () = , and () = . 
It is well known that Horner’s schema is optimal, i.e., there is no general strategy 

evaluating every polynomial of degree  with less than  multiplications and less 
than  additions. But this does not exclude that there exist special concrete poly­
nomials of degree  that can be evaluated with less amount of work. The following 
task is for strong students. 

QT 5.3.10 Find some polynomials such that can be evaluated with less multiplications 
than their degrees. Can you solve this task also if all coefficients of the polynomial are 
different from 0? 
Solutions and expectations An easy solution is to take the polynomial 8 + 1 for 

in stance. One can express 8 + 1 as ((2)2)2 + 1 and evaluate this polynomial of 
degree 8 with 3 multiplications only (see Fig. 29). 

If one takes polynomials with coefficient 1 by the highest degree, then one always 
saves one multiplication. For instance 

3 + 72 + 15 − 6 = (( + 7) ∗  + 15) ∗  

and the evaluation works with two multiplications only. 

A more advanced example starts with an expression that can be evaluated by two 
mul tiplications and one addition: ( − 1)4 (see Fig. 30). 

Fig. 28. Horner’s schema: Circuit evaluating polynomial of degree n + 1.
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But 

( − 1)4 = ( − 1)2 ∗ ( − 1)2 

= (2 − 2 + 1) ∗ (2 − 2 + 1) 

= 4 − 43 + 62 − 4 +1 

is a polynomial of degree 4. 

Fig. 29. Circuit with a polynomial of degree 8 that can be evaluated  
with 3 multiplications. 

Fig. 30. Circuit for one addition and two multiplications. 
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Students can be asked to develop more such examples and increase the gap be­
tween () =  and really needed number of multiplications for concrete polyno­
mials of degree . For instance the polynomial of degree 2n 

( − 1)2
n

can be evaluated by 1 addition and  multiplications instead of  additions and 2n 
multiplications. 

Additional exercises Already before developing the general Horner’s schema one can 
ask students to find strategies for the evaluation of many concrete polynomials by as 
few multiplications as possible. 

After presenting Horner’s schema as a universal strategy for evaluating polyno­
mials that cannot be improved in general, teachers can deal with polynomials for 
which eval uation one can save some operations. A funny example is 25 + 1134 + 

73 − 2132 − 71 + 29. Here one case save one multiplication (by exchanging it 
for one addition) by simple modification of the polynomial to 

(5 + 5) + 1134 + 73 − 2132 − 71 + 29 

and then applying Horner’s schema. 

((((( + ) + 113) + 7) − 213) − 71) + 29 

Another funny task for students can be to minimize the number of multiplications 
when evaluating polynomials 28 + 26 − 4 + 62 − 7 (4 multiplications and 5 
additions) or 212 − 68 + 34 − 7 (by 4 multiplications and 4 additions). 

Teacher can help students to discover that one can save the execution of one mul­
tiplication if a polynomial has as many real roots as its degree. For instance 2 + 2 

− 3 = ( − 1) ∗ ( + 3), and so one multiplication is sufficient. In this way ( − 7) 

∗ ( + 6) ∗ ( − 1) ∗ ( + 2) is a polynomial of degree 4 that can be evaluated by 
3 multiplications, does not matter which are the coefficient of the polynomial. This 
can work also for ( +  − 5) ∗ ( + 2) ∗ ( +  − 6) ∗ ( + 3) if one wants 
to gen erate polynomials with leading coefficient different from 1. Students have to 
discuss it with teacher to understand that this does not lead to a schema better than 
Horner’s one. There are several reasons for that. First, there are polynomials that do 
not have real roots. Secondly even for those that have real roots, one cannot achieve 
any real leading coefficient in the proposed way. Finally, and most importantly, get­
ting the coefficient of a polynomial as inputs, one needs first compute the roots of 
this polynomial before applying the knowledge about the roots to evaluate the poly­
nomial efficiently. But esti mating the roots of a polynomial is usually much more 
computationally intensive than evaluating the polynomial. Moreover, for polynomi­
als of degree 4 and more there is no formula one could use in order to discover the 
roots. Still worse, there is even a mathematical proof that for polynomials of degree 
higher than 3 such formula does not exist, and so nobody could discover it in order 
to apply it for evaluating polynomials. 
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6. Conclusion 

If one wants to strengthen students in algorithmic (computational) thinking, one should 
not train to correctly execute presented algorithms only. Instead, one has to push the 
students to use and develop abstractions and problem solving competencies in order to 
discover algorithms by their own. This requires developing robust strategies for design­
ing algo rithms for a large variety of problems. Teaching in high school asks for natural 
and well understandable strategies. 

Constructive induction is the oldest robust strategy for solving problems and it is 
very transparent and comprehensible to students. But the key point is that constructive 
induc tion has a very high educational value with respect to the development of the stu­
dent’s way of thinking. Except the potential of introducing induction as a proof method, 
constructive induction offers a special case of recursion and so can be used as an easy 
introduction to the recursive algorithm design method “divide et impera” (divide and 
conquer). The induction step results in a recurrence that corresponds to the reduction of 
solving prob lem instances of size  to solving problem instances of size smaller than n, 
and so to the concept of “divide et impera.” Also note that using constructive induction 
in problem solv ing consequently from smaller instance sizes to larger ones is also the 
base of “dynamic programming,” another fundamental algorithm design technique. 

In this paper we only outlined what kind of problems can be approached by construc­
tive induction in high schools and showed how to involve students in searching for solu­
tions in classrooms for some representative algorithmic problems. A careful implemen­
tation of teaching solving further problems by constructive induction is presented in our 
textbook Gallenbacher et al. (2023), which shows how to guide students such that they 
discover solutions and develop algorithms to a large extend on their own. 

Acknowledgements 

We are deeply indebted to Peter Widmayer who called our attention to the great potential 
of constructive induction for teaching algorithm design. We would like to thank Dennis 
Komm for his comments and improvements on the extended abstract of this paper. 

References 

Arnold, J., Donner, C., Hauser, U., Hauswirth, M., Hromkovic, J., Kohn, T., Komm, D., Maletinsky, D., Roth, 
N. (2019). Programmieren und Robotik. Klett und Balmer AG, Baar, Switzerland. 

Bussey, W.H. (1917). The origin of mathematical induction. The American Mathematical Monthly, 24(5), 199–
207. 

Cypher, A. (1993). Watch what I do: Programming by Demonstration. MIT Press, Cambridge, MA, USA and 
London, UK. 

Dagiene, V., Hromkovic, J., Lacher, R. (2021). Designing informatics curriculum for K­12 education: From 
Concepts to Implementations. Informatics in Education, 20 (3), 333–360. 

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Reserarch, 
2(1), 57–73. 

Fincher, S., Jeuring, J., Miller, C.S., Donaldson, P., du Boulay, B., Hauswirth, M., Hellas, A., Hermans, F., 
Lewis, C., Mühling, A., Pearce, J.L., Petersen, A. (2020). Notional machines in computing education: the 



J. Hromkovič, R. Lacher144

education of attention. In: Proceedings of the Working Group Reports on Innovation and Technology in 
Computer Science Education (ITiCSE-WGR 2020. ACM, New York, NY, USA, pp. 21–50. 1­58113­828­8. 

Gallenbacher, J., Hromkovic, J., Lacher, R., Komm, D., Pierhöfer, H. (2023). Algorithmen und Künstliche Intel-
ligenz. Klett und Balmer AG, Baar, Switzerland. 

Hromkovic, J., Lacher, R. (2023). How teaching informatics can contribute to improving education in general. 
Bull. EATCS, 139. 

Hromkovic, J., Lacher, R. (2024). Teaching Tangible Division Algorithms or Going from Concrete to Abstrac­
tions in Math Education by the Genetic Socratic Method. In: Proceedings of the 7th International Confer-
ence, CMSC 2024. LNCS 15229. Springer, Cham, Switzerland, pp. 136–144. 978­3­031­73257­7 (eBook). 

Hromkovic, J., Kohn, T., Komm, D., Serafini, G. (2016). Combining the power of Python with the simplicity of 
Logo for a sustainable computer science education. In: Proceedings of the 9th International Conference on 
Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP 2016). LNCS 11169. Springer, Cham, 
Switzerland, pp. 155–166. 

Kohn, T. (2017). Teaching Python Programming to Novices: Addressing Misconceptions and Creating a Devel-
opment Environment. ETH Zürich, Zürich, Switzerland. 

Kohn, T., Komm, D. (2018). Teaching programming and algorithmic complexity with tangible machines. In: 
Proceedings of Informatics inSchools: Fundamentalsof Computer Science and SoftwareEngineering (ISSEP 
2018). LNCS 11169. Springer, Cham, Switzerland, pp. 68–83.

Lieberman, H. (2001). Your Wish is my Command. Morgan Kaufmann, San Francisco, CA, USA. 
Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. Basic Books, Inc., New York, NY, 

USA. 
Tanton, J.S. (2021). Mathematical Induction. Encyclopedia of Mathematics, Online: http://encyclopedi-

aofmath.org/index.php?title=Mathematicalinduction. Accessed Septem ber 20, 2024. 
Vacca, G. (1909). Maurolycus, the first discoverer of the principle of mathematical induction. Bulletin of the 

American Mathematical Society, 16(2), 70–73. 

J. Hromkovič has been professor of Information Technology and Eduation at the De­
partment of Computer Science at ETH Zurich since January 2004 to January 2025. He is 
member of Academia Europea since 2010. His research and teaching interests focus on 
informatics education, algorithmics for hard problems, complex ity theory with special 
emphasis on the relationship between determinsm, random ness, and nondeterminism. 
One of his main activities is writing textbooks which make complex recent discoveries 
and methods accessible for students and practitioners, and so contributing to the speed up 
of the transformation of new paradigmatic research results into educational folklore. In 
order to introduce the subject informatics to the school education, he founded the Centre 
for Computer Science Education in 2005. He is responsible for the master program Lehr­
diplom Informatik at ETH devoted to the education of computer science teachers.

R. Lacher is with the ABZ (Center for Computer Science Education at ETH) and worked 
for more than 30 years in large organizations as quality manager or  consultant on qual­
ity management. Regula has completed three educations: She is a ge ographer (master in 
natural sciences of the University of Zürich, 1990), a Quality Manager (accredited by 
the European Organization for Quality Management in 1993) and a physics laboratory 
technician (apprenticeship plus professional baccalaureate, in 1982). All these different 
backgrounds together with the interest in the concept of constructivism proved to be use­
ful in her work in informatics education. Regula en joys contributing to computer science 
education as a co­author to a series of textbooks, research papers and creates tasks for 
the Informatics Beaver Competition.


